EFFECT OF GA3 AND POTASSIUM ON GROWTH AND YIELD OF CABBAGE (Brassica oleracea var. capitata L.)

By

KAMRUM MOYAZZAMA Reg. No. 07-02611

A Thesis

Submitted to the Dept. of Horticulture & Postharvest Technology Sher-e-Bangla Agricultural University, Dhaka, In partial fulfillment of the requirements For the degree Of

MASTER OF SCIENCE (M.S.)

IN

HORTICULTURE

SEMESTER: JANUARY-JUNE, 2008

Approved by:

Md. Hasanuzzaman Akand Associate Professor Dept. of Horticulture & Postharvest Technology Sher-e-Bangla Agricultural University Dhaka-1207 Supervisor

[---

Md. Ismail Hossain Associate Professor Dept. of Horticulture & Postharvest Technology Sher-e-Bangla Agricultural University Dhaka-1207 Co-Supervisor

(Prof. Md. Ruhul Amin) Chairman Examination committee

Sher-e-Bangla Agricultural University PABX + 88029144270-9 Sher-e Bangla Nagar, Dhaka-1207

Fax : + 88029112649 Web site: www.sau.edu.bd

CERTIFICATE

This is to certify that the thesis entitled, "EFFECT OF GA3 AND POTASSIUM ON GROWTH AND YIELD OF CABBAGE (Brassica oleracea var. capitata)" submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Horticulture, embodies the result of a piece of bona fide research work carried out by KAMRUM MOYAZZAMA, Registration No.07-02611 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that such help or source of information, as has been availed of during the course of this investigation has been duly acknowledged by her.

Date:

Md. Hasanuzzaman Akand Associate Professor Dept. of Horticulture & Postharvest Technology Sher-e-Bangla Agricultural University Dhaka-1207 Supervisor

ACKNOWLEDGEMENT

All praises are due to the almighty and merciful Allah, who enabled the researcher to complete the study successfully. Guidance, help and co-operation have been received from several persons or authority during the tenure of the study. The author is immensely grateful to all of them. Although it is not possible to mention everyone by name, it will be an act of ungratefulness if some names are not mentioned here.

The author with a sense of respect expresses her heartfelt gratitude to her supervisor Associate Professor Md. Hasanuzzaman Akand, Department of Horticulture and Postharvest Technology of Sher-e-Bangla Agricultural University (SAU), Dhaka-1207 for his untiring and painstaking guidance, innovative suggestions, continuous supervision, timely instructions and inspirations throughout the tenure of research work.

Heartfelt gratitude and profound respect are due to her co-supervisor Md. Ismail Hossain, Associate professor, Department of Horticulture and Postharvest Technology of SAU for his constructive criticism, valuable suggestions and co-operation throughout the study period.

The author is grateful to all the teachers and course instructors of Department of Horticulture and Postharvest Technology of SAU for their creative suggestions, constructive criticism and guidance. Last but not least, the author expresses her heartfelt gratitude and indebtedness to the departed soul of her mother Mrs. Rokeya Ahmed, her husband A. S. M. Ahasan Habib, brothers, sisters, relatives and friends for their inspiration, encouragement and blessings that enabled him to complete this research work.

The Author

EFFECT OF GA₃ AND POTASSIUM ON GROWTH AND YIELD OF CABBAGE (Brassica oleracea var. capitata L.)

By

KAMRUM MOYAZZAMA

ABSTRACT

The experiment was conducted at the Horticulture Farm, Sher-e-Bangla Agricultural University, Dhaka, during the period of October 2007 to February 2008 to study the effect of GA₃ and potassium on growth and yield of cabbage. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The experiment considered of two factors; Factor A: three concentration of GA₃. Go= Oppm GA₃, GI= 65ppm GA₃ and G₂= 85 ppmGAs; Factor B: four levels of potassium Ko=0 kg K₂O/ha, Ki= 120 kgK₂O/ha, K₂= 135 kgK₂O/ha and K₃=150 kgK₂O/ha. Incase of GA₃ the highest yield (62.87 t/ha) was observed from G₂ and the lowest (52.64 t/ha) was found from control. The highest yield (69.57 t/ha) was recorded from K₃ and the lowest (47.75 t/ha) were observed from control. For combined effect-the highest yield (76.67 t/ha) was found from G₁K₃ and the lowest (46.94 t/ha) from control. Economic analysis revealed that G₁K₃ was the best treatment combination in respect of net return (Tk. 225022) with a benefit cost ratio 2.42. It may be concluded that 65 ppm GA₃ with 150 K₂O / ha was found suitable for growth and yield of cabbage.

LIST OF CONTENTS

TOPICS	PAGE
ACKNOWLEDGEMENT	i
CONTENTS	ii-iv
LIST OF TABLES	v
LIST OF FIGURES	vi
LIST OF APPENDICES	vii
ABSTRACT	ix

CONTENTS

CHAPTER		PAGE	
I	INTR	TRODUCTION	
п	REVIEW OF LITERATURE		3-11
	2.1	Effect of GA_3 on the growth and yield of cabbage	3
	2.2	Effect of different levels of potassium on growth and yield of cabbage.	8
ш	METHODOLOGY		12-23
	3.1	Location of the experimental plot	12
	3.2	Characteristics of soil	12
	3.3	Climate	13
	3.4	Planting materials	13
	3.5	Raising of seedlings	13
	3.6	Treatment combinations	14
	3.7	Layout and design of experiment	. 14
	3.8	Land preparation	16
	3.9	Application of manure and fertilizer	16
	3.10	Transplanting	16
	3.11	Gap filling	17

CONTENTS (Contd.)

CHAPTER			PAGE
3.12	Intercultural operations		17
3.13	Control of pest and disease		18
3.14	Preparation and application of GA3		18
3.15	Harvesting		18
3.16	Data collection		19
3.16.1	Plant height		19
3.16.2	Number of leaves per plant		19
3.16.3	Spread of plant		19
3.16.4	Length of large leaves		19
3.16.5	Days from transplanting to head formation		20
3.16.6	Length of stem		20
3.16.7	Fresh weight of stem		20
3.16.8	Diameter of stem		20
3.16.9	Dry matter content of stem	ě	20
3.16.10	Number of roots per plant		21
3.16.11	Length of roots		21
3.16.12	Fresh weight of roots		21
3.16.13	Thickness of head		21
3.16.14	Diameter of head		21
3.16.15	Weight of loose leaves		21
3.16.16	Gross weight of head		22
3.16.17	Economic yield per plant		22
3.16.18	Dry matter content of head		22
3.16.19	Yield per plot	52	22
3.16.20	Yield per hectare		22
3.16.21	Statistical analysis		23
3.16.22	Economical analysis		
			23

CONTENTS (Contd.)

- 10

IV	RESU	LTS AND DISCUSSION	24-60
	4.1	Plant height	24
	4.2	Number of leaves per plant	28
	4.3	Spread of plant	30
	4.4	Length of large leaf	33
	4.5	Days from transplanting to head formation	33
	4.6	Length of stem	38
	4.7	Fresh weight of stem	39
	4.8	Diameter of stem	40
	4.9	Dry matter content of stem	41
	4.10	Number of roots per plant	41
	4.11	Length of roots	42
	4.12	Fresh weight of roots	45
	4.13	Thickness of head	46
	4.14	Diameter of head	46
	4.15	Weight of loose leaves	47
	4.16	Gross weight of head	48
	4.17	Economic yield per plant	51
	4.18	Dry matter content of head	52
	4.19	Yield per plot	53
	4.20	Yield per hectare	53
	4.21	Economic analysis	54
	4.21.1	Gross return	56
	4.21.2		56
	4.21.3	Benefit cost ratio	56
v	SUMM	IARY, CONCLUSIONS AND RECOMMENDATIONS	57-60
VI	REFEI	RENCES	
	APPEN	NDICES	

LIST OF TABLES

TAI	BLE	PAGE
1	Combined effect of different concentration of GA ₃ and potassium on plant height, number of leaves and spread of plant of cabbage	27
2	Main effect of different concentration of GA ₃ and potassium on yield contributing characters of cabbage	34
3	Combined effect of different concentration of GA ₃ and potassium on yield contributing characters of cabbage ⁻	35
4	Main effect of different concentration of GA ₃ and potassium on yield contributing characters of cabbage	43
5	Combined effect of different concentration of GA ₃ and potassium on yield contributing characters of cabbage	44
6	Main effect of different concentration of GA ₃ and potassium on yield contributing characters and yield of cabbage	49
7	Combined effect of different concentration of GA ₃ and potassium on yield contributing characters and yield of cabbage	50
8	Cost and return of cabbage cultivation as influenced by different concentration of GA ₃ and level of potassium	55

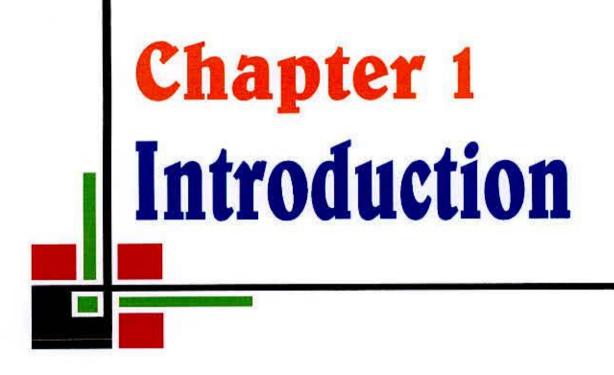
vi

LIST OF FIGURES

FIG	URE	PAGE
1	Layout of experimental plot	15
2	Effect of different concentration of GA3 on plant height of cabbage	25
3	Effect of different level of potassium on plant height of cabbage	25
4	Effect of different concentration of GA ₃ on number of leaves per plant of cabbage	29
5	Effect of different level of potassium on number of leaves per plant of cabbage	29
6	Effect of different concentration of GA3 on spread of plant	31
7	Effect of different level of potassium on spread of plant	31
8	Effect of different concentration of GA ₃ on days from transplanting to head formation	36
9	Effect of different level of potassium on days from transplanting to head formation	36
10	Combined effect of different concentration of GA ₃ and level of potassium on days from transplanting to head formation	37

vii

LIST OF APPENDICES


APPENDIX		PAGE
Ι	Physical & Chemical properties of soil in the experimental field	68
Π	Monthly Air temperature, Rainfall, Relative humidity and Sunshine of the Experimental site during the study (October, 2007 to February, 2008)	69
ш	Analysis of variance of the data on plant height, number of leaves and spread of plant of cabbage as influenced by different concentration of GA ₃ and potassium	70
IV	Analysis of variance of the data on yield contributing characters of cabbage as influenced by different concentration of GA ₃ and potassium	70
v	Analysis of variance of the data on yield contributing characters of cabbage as influenced by different concentration of GA ₃ and potassium	71
VI	Analysis of variance of the data on yield contributing characters and yield of cabbage as influenced by different concentration of GA ₃ and potassium	71
VII	Production cost of cabbage per hectare	72

ACRONYMS

BBS	Bangladesh Bureau of Statistics
cm.	Centimeter
cv.	Cultivar
DAT	Date After Transplanting
FYM	Farm Yard Manure
m	Meter
MOC	Mustard Oil Cake
MP	Muriate of Potash
NS	Not Significant
RCBD	Randomized Completely Block Design
t/ha	Ton per hectare
TSP	Triple Super Phosphate
Viz.	Namely

Wt. Weight

1 100 AT BY PATT

CHAPTER I

INTRODUCTION

Cabbage (*Brassica oliracea* var. *capitata*) belongs to the family Cruciferae and is biennial harbacious in nature. It is one of the important vegetables in Bangladesh. The origin of cabbage is the Western Europe and north shores of the Mediterranean Sea (Chauhan,1986). Cabbage was reported to be grown in the Subcontinent during Mughal period, but the vegetable become popular during British rule(Bose and Som, 1986). In Bangladesh cultivation of cabbage is mainly in winter months.

The edible portion of cabbage plant is head which is formed by the fleshy leaves overlapping one another. It has been reported that 100 g of green edible portion of cabbage contains 92% water, 24 calories of food energy, 1.5 g of protein, 4.8 g of carbohydrate, 40 mg of calcium, 0.6 mg of iron, 600 IU of carotene, 0.05 mg of riboflavin, 0.3 mg of niacin and 60 mg of vitamin C (Rashid, 1993).

Cabbage occupied an area of 11.33 thousand hectares of land during 1999-2000 growing season with a total production of 112 thousand metric tones in Bangladesh (BBS, 2000) Thus the average yield was 9.89 t/ha. This is considered as low yield compared to that of other countries of the world, viz., South Korea (61.17 t/ha), Germany (54.81 t/ha), Japan (40.32 t/ha) and India (19.10 t/ha) (FAO, 1999). Such a poor yield attributed to a greater extent on the method of production technology followed by the farmers.

Growth regulators are organic compounds other than nutrients; small amount of which are capable of modifying growth (Leopold, 1963). Among the growth

regulators, auxin causes enlargement of plant cell, and gibberellins stimulate cell division, cell enlargement or both (Nickell, 1982). Due to the diversified use of productive land, it is necessary to increase the food production, and gibberellic acid (GA₃) may be a contributor in achieving the desired goal. The production of cabbage can be increased by using GA₃. Cabbage was found to show a quick growth when treated with plant growth regulators (Islam *et al.*, 1993). Application of GA₃ stimulates morphological characters like plant height, number of leaves, head diameter, thickness of head as well as the weight of head. The concentrations of the chemical interacting with the environmental conditions and play important role in modifying the growth and yield components of cabbage.

Potassium deficiency may affect such varied process such as respiration, photosynthesis, chlorophyll development water content of leaves. The highest concentration of potassium is found in the meristematic regions of the plant (Nason and Mc Elory, 1963).

Considering the above facts, the present investigation was undertaken with the following objectives:

- to find out appropriate concentration of GA₃ for maximizing cabbage production.
- 2. to study the effect of potassium on growth and yield of cabbage.
- to find out the optimum doses of GA₃ and potassium for better vegetative growth, the maximum yield and economic return of cabbage.

Chapter 2 Review of Literature

CHAPTER II

REVIEW OF LITERATURE

Cabbage is an important vegetable crop of many countries of the world as well as in Bangladesh. Considerable interest has been developed recently regarding the benefit from the use of GA₃ has been known to play a vital role in increasing the growth, yield and quality of cabbage. A great deal of research work has been reported on the uses of GA₃ in different vegetables including cabbage and the results already achieved are of outstanding importance. A good number of experiments on the effect of potassium on the growth and yield of cabbage were conducted in different parts of the country. But limited numbers of studies are found in this respect in Bangladesh. However, some of the research finding regarding the effects of different levels of GA₃ and potassium on the growth and yield of cabbage has been presented in this chapter.

2.1 Effect of GA₃ on the growth and yield of cabbage

Srivastava (1960, 1965, 1966) reported the beneficial effects of GA₃, NOA and other plant growth regulators as pre-sowing seed treatments of many vegetable crops. He concluded that the application of GA₃ or 2,4-D at appropriate concentration as pre sowing seed treatment may be quite beneficial in obtaining increased yield.

Chhonkar and Singh (1965) conducted an experiment in the Rabi season of 1962-63 with GA₃ at 5 and 10 ppm after two t and three weeks of transplanting. They reported that 5ppm GA₃ induced larger number of inner leaves in heads, earlier head formation by 16 days, increased head diameter, improved compactness and significantly increased the yield and quality of heads.

Chauhan and Singh (1970) found that 2 sprays of 15 ppm GA₃ at 2 and 3 weeks after cabbage transplanting increased earliness, yield and quality.

Chauhan and Bordia (1971) carried out an investigations using Drumhead variety of cabbage to assess the effects of Gibberellic acid (GA₃) at 5, 10, 15, 25, 50, 100 ppm, Beta-napthoxy-acetic acid (NOA) at 5, 10, 15, 25, 50, 100 ppm and 2,4-Dicholorophenoxy-acetic acid (2,4-D) at 0.25, 0.5, 1.0, 2.0, 2.5 ppm as pre sowing seed treatment on the growth and yield of cabbage and mentioned that none of the treatments affected the height of the plants and the time taken for head formation. Maximum weight of head (1.72 kg) was obtained with 50 ppm GA₃ as against 0.81 kg under control.

Zee (1978) applied Gibberellic acid once or twice as 10 or 20 ppm spra on seedling of cabbage at transplanting or 10 or 20 days after transplanting, plants reached edible maturity 53 days after transplanting when treated with 20 ppm GA₃. Plant fresh weight and dry weight were considerably enhanced by a 20 ppm GA₃ spray applaied 10 days after transplanting. Transplanting 30 days after sowing delayed harvest and reduced plant weight, regardless of GA₃ treatment.

Badawi and Sahhar (1979) conducted an experiment at the experimental station of the faculty of Agriculture, Cairo University, Egypt. They sprayed 0, 50, 100 and 200 ppm GA₃ and 0, 10, 20 40 ppm IBA after 4 and 8 weeks of transplanting to determine the extent of stimulating effect of different concentration of GA₃ and IBA on cabbage. In the most cases, treatments showed a decline in both diameter and height of edible

head. They found higher edible head weight (5.21 kg) was obtained with GA₃ (50 ppm) applied 4 weeks after transplanting.

Abdalla *et al.* (1980) conducted an experiment with the cauliflower varieties and the plant were treated with different concentrations of IBA (5-40ppm), GA₃ (10-80ppm) or NNA (120-160ppm) 4 weeks after transplanting and twice more at fortnightly intervals. NNA at 160 ppm gave the height yield with regard to card diameter, weight and color. Similar results were obtained from plants treated with GA₃ at 80 ppm and NNA at 40 ppm.

Kato and Sooen (1980) observed that leaf petiole epinasty in cabbage in cabbage appeared to be controlled by the hormone balance at the epical region of the stem. They also reported that applied NAA induced a downward movement of the wrapper leaves of decapitated plants and the plants with the entire heads and in the leaves of young seedlings but GA₃ induced the upward movement of leaves.

Yabuta *et al.* (1981) reported that application of GA₃ had significantly increased marketable weight, petiole length and number of leaves and height of many leafy vegetables but decreased the leaf area.

Islam (1985) conducted an experiment at the Bangladesh Agriculture University Farm, Mymensingh and applied various growth regulators (CCC, GA₃, NAA and IBA) 30 days after transplanting of 32-days-old seedlings and reported that CCC decreased the plant height, size of loose leaves, diameter of cabbage head and finally

the yield. GA₃ increased the plant height of the plant, number of loose leaves per plant, size of leaf and finally the yield.

Mishra and Singh (1986) conducted an experiment in two season trials with Snowball-16 cauliflower N and/or GA₃ were applied 15 and 45 days after transplanting found that 1% N plus 50 ppm GA₃ gave the highest yield (301.48 t/ha), whereas Bo had less effect.

Muthoo *et. al.*(1987) reported that foliar application of different concentrations of GA₃, NNA and Mo (in various combination or separately) increased the average fresh weight and dry weight of leaves and curd and yield. Among individual application, GA₃ was the best for vegetative growth and Mo followed by NNA for curd growth and yield.

Pendey and Sinha (1987) reported that photosynthetic area of the plant increased when treated with gibberellic acid and napthaline acetic acid.

Patil *et al.* (1987) conducted an experiment in a field trial with the cabbage cultivar Pride of India by applying GA₃ and NNA each at 25, 50, 75 and 100 ppm one month after transplanting. Both the GA₃ and NNA increased the plant height significantly. The maximum plant height and head diameter and head weight were noticed with GA₃ at 50ppm followed by NAA at 50 ppm. Significant number of outer and inner leaves was noticed with both GA₃ and NAA. Head formation and head maturity was 13 and 12 days earlier with 50 ppm GA₃. Maximum number of leaves and maximum yield (23.83 t/ha) were obtained with 50 ppm GA₃.

Islam *et al.* (1993) was made in invstigation to determine the effective concentration of NNA and GA₃ for promoting growth, yield and ascorbic acid content of cabbage. They used 12.5, 25, 50, 100 ppm both the NAA and GA₃ and applied at three different methods i.e. seedling soaked for 12 hours, spraying at 15 and 30 days after transplanting. They found that ascorbic acid content increased up to 50 ppm when sprayed twice with both the growth regulators, while its content was declined afterwards. They also added that two sprays with 50 ppm GA₃ was suitable both for higher yield and ascorbic acid content of cabbage.

Dharmender *et al.*(1996) conducted an experiment with growth regulators and found that GA₃ and/or NAA (both at 25, 50 or 75 ppm) 0n the yield of cabbages (ev. Pride of India) was investigated in the field at Jobner, Rajasthan, India. The highest yield was observed following treatment with 50 ppm GA₃ followed by 50 ppm NAA. Combinations and higher concentration of plant growth regulators proved less effective and were uneconomic in comparison to the control.

Vijoy et al. (2000) observed that 30 day old Cauliflower (cv. Pant Subhra) seedling were transplanted into experimental plots and treated with 50 or 100ppm GA₃, 5 or 10ppm IBA, or 100 or 2000ppm NAA at 15 and 30 days of growth. The results clearly revealed that GA₃ produced the tallest plants, the largest curds and the highest curd yields.

2.2 Effect of different levels of potassium on growth and yield of cabbage.

Nieuwhof (1969) mentioned that on lime rich sandy clay soils in the Netherlands having 0.02 to 0.04 percent K₂O, the optimum applicational need average was 400kg K₂O per hectare for cabbage. In Germany, dressings of 80 to 220 kg of K₂O per hectare recommended.

While carrying out an experiment on the fertilizer trial with N, P and K for white cabbage at Pasvicdalen, Samuelsen and Pettersen (1977) found that 200-270 kg N and 150 kg K₂O/ha gave higher growth and yield of cabbage.

Nunung-Nurtica (1980) conducted an experiment to study the effects of NPK levels on the yield of cabbage. He found that on an andasol at Margahayu, N and K₂O at the rates of 90 and 100 kg/ha respectively gave the highest yield and at Cibodasy the highest yield was obtained with 135 and 150 kg N and K₂O/ha, respectively.

In a two year trials, Samant *et. al.* (1981) studied the effects of different levels N, P and K on yield of cabbage in Eastern Ghat Island zone of Orissa. N, P₂O₅ and/or K₂O were applied at 75-150: 40-80: 75-150 kg/ha in 27 different combinations. They reported that the best fertilizer combination was 75:80:150 kg/ha.

An experiment was conducted at Joydebpur, Gazipur on cabbage (var.Atlas-70) during the Rabi season to find out the effect of chemical fertilizer and manure (Anon. 1985). There were five levels of nitrogen (0, 60, 120, 180 and 240 kg N/ha from urea), four levels of phosphorus (0, 60. 90 and 120 kg P_2O_5 /ha from TSP) and four

levels of potassium (0, 60, 120 and 180 kg K₂O/ha from MP) along with cow dung @ 5 ton/ha. The head yield was increased with the increasing rate of NPK. The highest yield (110.98) t/ha was obtained from the combined effect of 180 kg N/ha, 120kg P_2O_5 /ha and 120 kg K₂O/ha with 5t/ha of cow dung.

Farooque and Islam (1989) conducted an experiment on the effect of spacing and different management practices on the growth and yield of cabbage. They reported that the highest marketable yield produced when 8.3 t FYM, 200 kg MOC, 326 kg Urea, 125 kg TSP and 200 kg MP per hectare were applied.

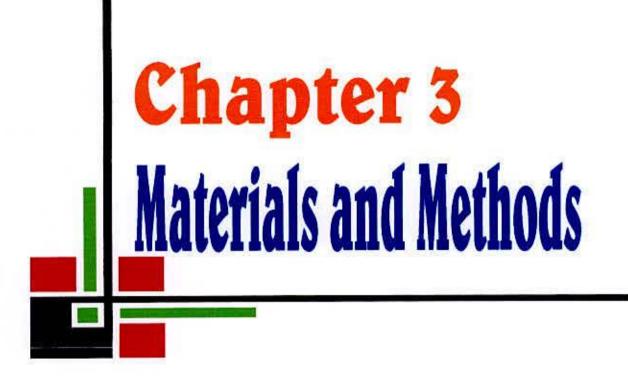
Rao and Subramaniun (1991) conducted an experiment to fiend out the effect of potassium application on the yield and content of potassium, calcium and magnesium in cabbage at Bangalore in India. They applied K₂O at 0, 25, 50, 100, 150 and 200 kg/ha. They observed that the plant K concentration at all stages of growth increased significantly at the increasing level of K₂O application .

Yetistiren and Vural (1991) studied the effects of various fertilizer applications on cabbage yield and quality. Nitrogen was applied at 10 or 20 kg/ha and K at 15 or 30 kg K₂O/ha. They reported that highest yield was obtained with 20 kg N + 30 kg K₂O/ha.

An experiment was carried out at Joydebpur, Gazipur on cabbage (var. Atlas-70) during Rabi season to fiendout the effects of fertilizer doses and organic manure on the yield of cabbage (Anonymous, 1991). The application of 240 kg N/ha, 60 kg P/ha and 120 kg K/ha along with the cow dung @ 5 t/ha produced highest head yield of 75

t/ha. Samant *et al.* (1992) investigated the balanced fertilizer use for cabbage in clay loam soils of Orissa, India. It was reported that nitrogen (75kg/ha) and potassium (150 kg/ha) gave the highest yield (17.42 t/ha), and it was the must economic dose.

Jothi *et al.* (1993) carried out an experiment on the influence of N, P and Azospirillum on the yield of cabbage at Tamil Nadu in India. They reported that a cabbage yield of 117.2 t/ha was obtained with the application of N, P and K at 100, 125 and 25 kg/ha respectively.


Aditiya (1993) reported that the Rabi season cabbage (Var.Atlas-70)required 225 kg/ha for its higher production.

Halim *et al.* (1994) conducted an experiment on the effect of different doses of NPK on growth and yield of cabbage at Jamalpur in Bangladesh. Nitrogen was applied at 0, 100, 150 or 200 kg/ha, P at 0, 50, 100 or 150 kg P_2O_5 and K at 0, 75, 150 or 225kg K2O/ha in 12 combinations to cabbage cv.K-K cross. Gross yield and marketable head weight per plant were found the highest with 150 kg N+ 100 kg P_2O_5 + 150 kg K_2O or 200 kg N + 100 kg P_2O_5 + 150 kg K_2O .

Tianxiu *et al.* (1994) studied the effect of K and Mg fertilizers applied to cabbage yield, quality and economic return and found that cabbage yield was higher with 150 kg K₂O/ha than with no potassium. The best cash return was also obtained with 150 kg K₂O/ha.

From the above reviews, it is clear that different concentrations of GA₃ and different levels of potassium have close relation with growth and yield of cabbage. These factors both singly or combined influence plant growth and yield of cabbage but the effects of these factors on the growth and yield of cabbage have not been studied in details under Bangladesh conditions. Therefore, to ensure proper crop management and to achieve the highest possible yield and economic return, such studies under Bangladesh conditions are needed.

CHAPTER III

MATERIALS AND METHODS

This chapter deals with the materials and methods that were used in the experiment. It include short description of location of the experimental plot, characteristic of soil, climate, materials of the experiment, raising of seedlings, treatments, layout and design, land preparation, manuring and fertilizing, transplanting, intercultural operations, harvesting, collection of data and statistical analysis which are given below:

3.1 Location of the experimental plot

The research work was conducted at the Horticulture Farm, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, during the period from October, 2007 to January 2008. The location of the site was 23.774⁰ N Latitude and 90.335⁰ E Longitude with the elevation of 8.2 meter from the sea level (Anon, 1989) to study the effect of GA3 and Potassium on growth and yield of cabbage.

3.2 Characteristics of soil

The soil of the experimental area belongs to the Modhupur Tract in Agro Ecological Zone 28. The analytical data of the soil, collected from the experimental area were determined in SRDI, Soil Testing Laboratory, Khamarbari, Dhaka and presented in Appendix I.

3.3 Climate

The experimental site is situated in subtropical zone, the macro climate is characterized by heavy rainfall during the months from April to September (Kharif season) and scantly rainfall during the rest month of the year (Rabi season). Information regarding average monhly the maximum and minimum temperature, rainfall and relative humidity, soil temperature as recorded by the weather yard, Bangladesh Meteorological Department (Climate Division), Agargaon, during the period of study has been presented in Appendix II.

3.4 Planting Materials

The variety of cabbage used in the experiment was "Atlas-70". The seeds were collected from a seed trader of China seed store, Dhaka.

3.5 Raising of Seedlings

Cabbage seedlings were raised in two seedbeds of 5 m x 1 m size. The soil was well prepared and converted into loose friable condition to obtain good tilt. All weeds, stubbles and dead root were removed. Twenty grams of seeds were sown in two seed bed. The seeds were sown in the seed bed on 14 ,October, 2007. Seeds were then covered with finished light soil and shading was provided by polyethylene bags to protect the young seedlings from scorching sunshine and rainfall. Light watering weeding and mulching were done as and when necessary to provide seedlingsof a good condition for growth.

3.6 Treatments combination

The experiment was consisted of two factors viz. (A) three concentrations of GA₃ and (B) four levels of potassium.

The levels were as follows;

Factors A: Levels of concentration of GA₃ Solution

G0: 0 ppm GA3 -

G1: 65 ppm GA3

G2: 85 ppm GA3

Factors B: Levels of potassium

K₀: 0 kg K₂O per hectare

K1: 120 kg K2O per hectare,

K₂: 135 kg K₂O per hectare

K₃: 150 kg K₂O per hectare

The treatment combinations were 12 such as

G0K0, G0K1, G0K2, G0K3, G1K0, G1K1, G1K2, G1K3, G2K0, G2K1, G2K2 and G2K3

3.7 Layout and Design of Experiment

The two factor experiment was laid out in the Randomized Complete Block Design (RCBD) with three replications (Fig.1) the experimental plot was divided into three blocks. Each block consisted of 12 unit plots. Different combinations of potassium and GA₃ solution were assigned randomly to each block as per design of the experiment. The size of the plot was 3 m x 1.8 m. Block to block distance was 1 m and plot to plot was 0.5m.

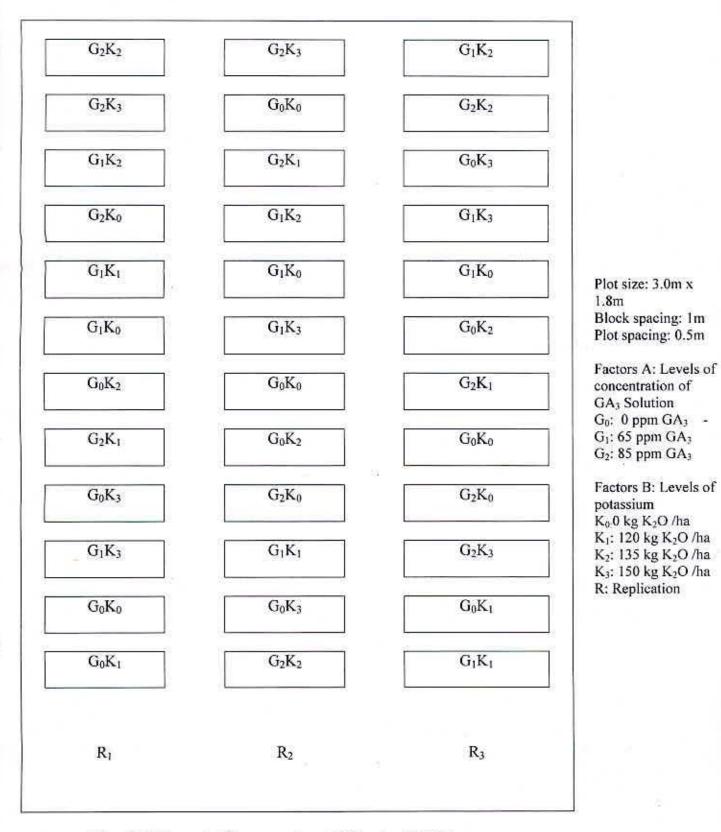


Fig : Field layout of the experiment following RCBD

3.8 Land Preparation

The selected plot was fallow at the time of period of land preparation. The land was opened on 02 November, 2007 with the help of the power tiller and then it was kept open to sun for seven days prior to further ploughing, cross ploughing followed by laddering. The weeds and stubbles were removed after each laddering. Simultaneously the clods were broken and the soil was made into good tilt for transplanting.

3.9 Application of manures and fertilizers

Well decomposed cow dung was applied to the plots at the rate of <u>10 tons/ha</u>-and incorporated to the soil during final land preparation. In addition, Urea and Triple super phosphate (TSP) were applied to the experimental plot @ 325 and 150 kg/ha, respectively (BARC, 1997).

The total amount of urea was applied as top dressing in ring method. 1st top dressed of one third was applied 15 days after transplanting and reminder urea was top dressed in two equal installments at 30 and 45 days after transplanting. Triple Super phosphate was applied as basal dose. Muriate of potash was applied as basal dose in the plots as per treatment.

3.10 Transplanting

Thirty days old healthy and uniform sized seedlings were transplanted in the experimental plots on 16 November, 2007. The seedbed was watered one hour before uprooting the seedlings to minimize the damage to the roots of the seedlings. Healthy and 31 days old seedling were transplanted. Transplanting was done in the afternoon.

During transplanting of seedling, spacing between rows 60 cm and plant 60 cm were followed. Fifteen plants were transplanted in each unit plot. The seedlings were watered immediately after transplanting. To protect from scorching sunshine and unexpected rain, banana leaf sheath pieces were used over the transplanted seedlings. Shading and watering were continued until the seedlings were well established and it required for 6 days. A number of treated seedlings were planted on the border of the experimental plots for gap filling.

3.11 Gap filling

Very few seedlings were damaged after transplanting and such seedling were replaced by new seedlings from the same stock planted earlier on the border of the experimental plots. The seedlings were transplanted with a mass of root attached soil to avoid transplanting shock.

3.12 Intercultural operations

The plants were kept under careful observation. Light watering was done every morning and afternoon following transplanting and was continued for 6 days for early and well establishment of the seedlings. Weeding and other intercultural operations were done as and when required. Earthing up was done on both sides of rows after 60 days of transplanting, using the soil from the space between the rows.

3.13 Control of pest and disease

Insect attack was serious problem at the time of establishment of the seedling. Mole cricket, field cricket and cut warm attacked the young transplants. Basudin was applied for controlling the soil born insects.

Cut worms were controlled both mechanically and spraying Darsban 20 EC @ 3%. Some of the plants were attacked by aphids and were controlled by spraying Diazinon 60 EC @560 ml/ha. Few plants were infected by Alternaria leaf spot disease caused by *Alternaria brasicae*. To prevent the spread of disease copper oxychloride (50%) was sprayed in the field at the rate of 1.35 kg per 450 liters of water.

3.14 Preparation and application of GA3

GA3 in different concentrations viz. 0, 65 and 85 ppm were prepared following the procedure mentioned below and spraying was done during the noon using hand sprayer. Spraying was done 25 days after transplanting. A 65 ppm solution of GA₃ was prepared by dissolving 65 mg of it with distilled water. Then distilled water was added to make the volume 1 liter 65ppm solution. In a similar way 85 ppm concentrations were made. An adhesive Tween-20 @ 0.1% was added to each solution according to (Roy *et al.* 1991).

Control plots were treated only with distilled water.

3.15 Harvesting

The crop was harvesting during the period from 20th to 30th January, 2008. when the plants formed compacted heads. Harvesting was done plot wise after testing the

compactness of the cabbage head by thumb. The compact head showed comparatively a hard feeling. Each head was collected by cut at the base of the plant.

3.16 Data collection

When the heads were well compact, the plants were harvested at random from each unit plot. Then plants were randomly selected from each plot and data were recorded according the characters were studied. However, for gross and marketable yield per plot, all plants of each unit plot were considered.

Periodical data i. e. plant height, number of loose leaves, spread of plant length of large leaf were taken 30, 45 and 50 days after transplanting whereas the rest parameters were recorded at the time of harvest.

3.16.1 Plant height

The height of the plant was measured with meter scale from the ground level to the tip of the longest leaf and was recorded in centimeter (cm).

3.16.2 Number of leaves per plant

The number of leaves per plant was counted at 15, 30 and 45 days after transplanting.

3.16.3 Spread of plant

Horizontal space covered by the plant was measured in centimeter (cm) with a meter scale for determining spread of plant.

3.16.4 Length of large leaf

Length of large leaf was measured in cm with a meter scale from leaf base to the top and was expressed in centimeter (cm).

3.16.5 Days from transplanting to head formation

The period required to head formation from transplanting was recorded for all the plants.

3.16.6 Length of stem

The length of stem at harvest was measured in centimeter (cm) with the help of a meter scale as the distance from the ground level to the base of unfolded leaf.

3.16.7 Fresh weight of stem

The fresh weight of stem per plant was recorded from the average of 10 plants of each plot and was expressed in gram (g).

3.16.8 Diameter of stem

The diameter of stem was measured in cm with a scale as the horizontal distance from one side of upper most level of the stem to another side after sectioning the stem longitudinally at the middle portion.

3.16.9 Dry matter content stem

First the fresh weight of stem was recorded. Then one hundred grams of stem were kept in the sun for two days then after dried in the oven at 70^oC for 72 hours. The weight of dry stem was measured by electric balance.

3.16.10 Number of roots per plant

After harvest, the main root was pulled out from soil carefully and the soil was washed out by water. Then the number of roots per plant was counted.

3.16.11 Length of roots

Ten plants from each plot was selected randomly and the length of root was measured in cm with a meter scale and expressed in cm.

3.16.12 Fresh weight of roots

The fresh weight of cabbage root was recorded from the average of 10 plants in gram (g).

3.16.13 Thickness of head

Thickness of head was measured in cm with the help of a scale placed vertically along the head.

3.16.14 Diameter of head

The harvested head was placed on a table in flat position and the diameter was measured in centimeter with a meter scale.

3.16.15 Weight of loose leaves

Weight of loose leaves was collected with balance.

3.16.16 Gross weight of head

The gross weight of harvested head was measured in kilogram including loose leaves but excluding the roots.

3.16.17 Economic yield per plant

It was the weight of cabbage head excluding roots and outer leaves measured in kilogram.

1.16.18 Dry matter content of head

Four hundred and fifty gram of cabbage head was collected from the chopped head of 10 plants. The sample was dried under direct sunshine and then was dried in an oven at 70° C for three days before taking dry weight till it was constant. The dry weight was recorded and dry matter content was estimated.

3.16.19 Yield per plot

Yield of cabbage per unit plot was recorded by weighting all the cabbage heads from each unit plot separately excluding roots and outer leaves and it was expressed in kilogram.

3.16.20 Yield per hectare

The yield per hectare was calculated by converting the per plot yield data to per hectare and was expressed in ton (t).

22

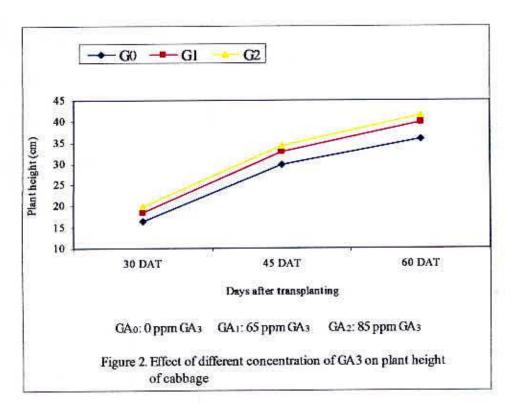
3.16.21 Statistical analysis

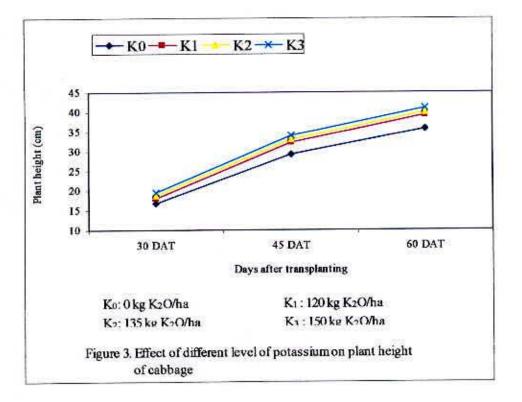
The data obtain for different yield components and yields were statistically analyzed to find out the difference among the treatments. The analysis of variance was performed by F- test. The significance of the difference between pairs of treatment means were evaluated by the Duncan's Multiple Range Test (DMRT).

3.16.22 Economical analysis

The cost of production was analyzed in order to find out the most economic treatment of GA₃ and potassium combination. All input costs and interests on fixed (land) and running capital were considered for computing the cost of production. The interests were calculated @ 13% for 6 months.

Chapter 4 Results and Discussion


CHAPTER IV


RESULTS AND DISCUSSION

The present experiment was conducted to determine the effect of different concentration of GA₃ and levels of potassium on growth and yield of cabbage. Data on different yield contributing characters and yield were recorded to find out the optimum concentration of GA₃ and level of potassium for cabbage cultivation. The analysis of variance (ANOVA) of the data on different yield components and yield are given in Appendix III-VI. The results have been presented and discussed, and possible interpretations were given under the following headings-

4.1 Plant height

Plant height varied significantly due to the application of different concentrations of GA₃ at the treatment days after transplanting (DAT) at 30, 45 and 60 (Appendix III). The tallest (19.78 cm) plant was recorded from the treatment G₂ (85 ppm GA₃) at 30 DAT followed by G₁ (65 ppm GA₃) and the shortest (16.24 cm) plant was obtained from G₀ (0 ppm GA₃) at 30 DAT. At 45 DAT, the tallest (34.12 cm) plant was recorded from G₂ followed by G₁, while the shortest (29.64 cm) was recorded from G₀. The tallest (41.46 cm) plant was recorded from G₂ which was closely followed (39.88 cm) by G₁ and the shortest (35.85 cm) was found from G₀ at 60 DAT (Figure 2). These results indicate that different concentrations of GA₃ create favorable condition for the growth of plant and the ultimate results the longest plant of cabbage was obtained. Badawi and Sahhar (1979) and Islam (1985) reported that the maximum height was obtained with GA₃ (50 ppm) applied 4 weeks after transplanting. Patil *et al.* (1987) reported the maximum plant height with GA₃ at 50 ppm.

37220 (05/11/13 09 (00) 13/09/09

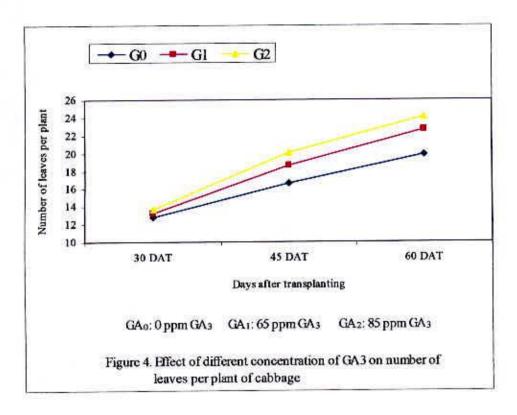
Different levels of potassium showed significant differences on plant height at 30, 45 and 60 DAT (Appendix III). The tallest (19.49 cm) plant was recorded from K_3 which was followed by K_2 and the shortest (16.64 cm) was recorded from control condition i.e. no potassium at 30 DAT. At 45 DAT the tallest (34.00 cm) plant was recorded from K_3 which was statistically similar (33.06 cm) to K_2 and the shortest (29.17 cm) plant was recorded from control condition. The tallest (41.04 cm) plant was recorded from K_3 which was statistically similar (40.10 cm) to K_2 and the shortest (35.80 cm) plant was obtained from control condition at 60 DAT (Figure 3). The results ensures maximum plant nutrients in available from potassium which help proper growth of plant and the results are the highest plant height. Rao and Subramaniun (1991) observed that the plant K concentration at all stages of growth increased significantly at the increased level of K_2O application.

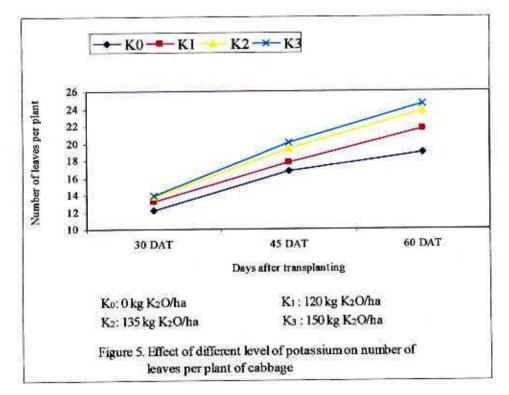
The significant variation was found due to the combined effect of different concentration of GA₃ and levels of potassium in terms of plant height at 30, 45 and 60 DAT (Appendix III). The tallest (21.28 cm) plant was found at 30 DAT from the treatment combination of G₂K₃ (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (21.14 cm) with G₂K₂ (85 ppm GA₃ and 135 kg K₂O/ha), while the shortest (14.84 cm) was recorded from G₀K₀ (no GA₃ and no potassium). At 45 DAT the tallest (36.31 cm) plant was found from G₂K₃ which was statistically identical (35.73 cm) with treatment combination of G₂K₂, while the shortest (25.80 cm) was recorded from G₀F₀. The tallest (43.69 cm) plant was obtained from G₂K₃ and the shortest (31.35 cm) plant was obtained from G₀K₀ at 60 DAT (Table 1). From the results it was revealed that both GA₃ and potassium favored in growth of cabbage and the ultimate results are the tallest plant than the control.

Treatment(s)	Plant height (cm) at		Number of leaves per plant at			Spread of plant (cm) at			
	30 DAT	45 DAT	60 DAT	30 DAT	45 DAT	60 DAT	30 DAT	45 DAT	60 DAT
G ₀ K ₀	14.84 f	25.80 g	31.35 f	11.33f	14.67 e	15.00 e	21.73 g	31.21 g	51.44 f
G ₀ K ₁	16.45 e	30.69 ef	37.04 e	13.11 cd	16.33 d	20.11 d	23.83 f	35.99 f	59.58 e
G_0K_2	16.52 e	30.98 ef	37.36 e	13.33 cd	17.89 c	22.22 cd	24.65 e	36.83 e	60.03 e
G ₀ K ₃	17.14 de	31.10 def	37.64 c	13.33 cd	17.55 cd	22.22 cd	24.98 de	37.90 d	60.58 e
G ₁ K ₀	16.95 e	30.14 f	37.34 e	12.45 e	17.11 cd	20.11 d	24.48 e	36.93 e	60.05 e
G ₁ K ₁	18.75 c	33.48 bc	40.56 cd	13.11 cd	18.55 c	22.56 c	25.49 cd	38.91 c	64.63 cd
G ₁ K ₂	18.45 c	32.47 cde	39.81 d	13.56 bc	18.44 c	23.00 bc	25.21 d	38.45 c	63.60 d
G ₁ K ₃	20.03 b	34.58 ab	41.80 bc	14.00 ab	20.56 b	25.00 ab	25.95 bc	39.71 b	66.40 bc
G ₂ K ₀	18.12 cd	31.56 def	38.71 de	12.89 de	18.33 c	21.67 cd	25.00 de	37.78 d	62.21 de
G ₂ K ₁	18.60 c	32.89 bcd	40.30 cd	13.22 cd	18.33 c	22.33 cd	25.35 d	38.56 c	64.18 cd
G ₂ K ₂	21.14 a	35.73 a	43.14 ab	14.33 a	21.67 ab	25.89 a	26.42 ab	40.50 a	68.41 ab
G ₂ K ₃	21.28 a	36.31 a	43.69 a	14.44 a	22.00 a	26.44 a	26.66 a	40.83 a	69.28 a
LSD _(0.05)	1.067	1.677	1.737	0.579	1.342	2.063	0.516	0.435	2.532
Significance Level	0.05	0.05	0.01	0.05	0.05	0.05	0.01	0.01	0.05
CV(%)	8.47	6.08	9.63	5.58	7.29	5.48	9.22	10.68	12.39

Table 1. Combined effect of different concentration of GA3 and potassium on plant height, number of leaves and spread of plant of cabbage

-

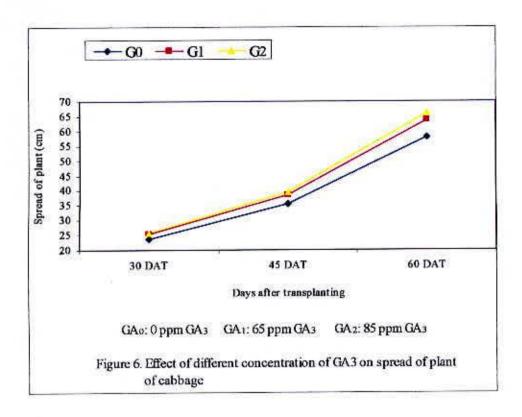

In a column means having similar letter(s) are statistically identical and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

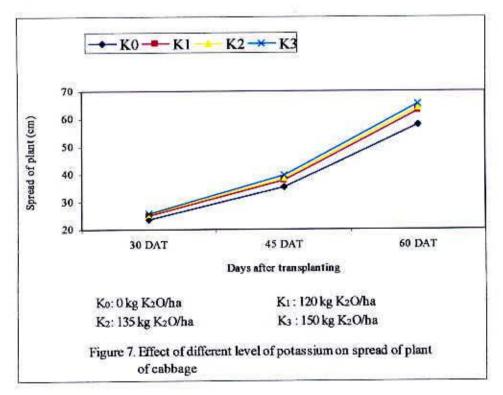

G ₀ : 0 ppm GA ₃	K ₀ : 0 kg K ₂ O/ha (control)
G1: 65 ppm GA3	K1: 120 kg K2O/ha
G2: 85 ppm GA3	K ₂ : 135 kg K ₂ O/ha
	K3: 150 kg K2O/ha

4.2 Number of leaves per plant

Number of leaves per plant differed significantly due to different concentrations of GA₃ at 30, 45 and 60 DAT (Appendix III). The highest (13.72) number of leaves per plant was recorded from G_2 (85 ppm GA₃) which was followed by G_1 (65 ppm GA₃), while the lowest (12.78) was obtained from G_0 (0 ppm GA₃) at 30 DAT. At 45 DAT, the highest (20.08) number of leaves per plant was observed from G_2 followed by G_1 and the lowest (16.61) was recorded from G_0 . The highest (24.08) number of leaves per plant was followed by G_1 and the lowest (16.61) was recorded from G_0 . The highest (24.08) number of leaves per plant was found from G_2 which was followed by G_1 and the lowest (19.89) was recorded from G_0 at 60 DAT (Figure 4). These results indicated that different concentration of GA₃ influenced number of leaves per plant. Islam (1985) reported that GA₃ increased the number of leaves with 50 ppm GA₃.

Different levels of potassium showed significant difference on number of leaves per plant at 30, 45 and 60 DAT (Appendix III). The highest (13.93) number of leaves per plant was recorded from K₃ (150 kg K₂O/ha) which was statistically identical (13.74) with K₂ (135 kg K₂O/ha), while the lowest (12.22) was found from control condition i.e. no potassium at 30 DAT. At 45 DAT the highest (20.04) number of leaves per plant was observed from K₃ which was statistically similar (19.33) with K₂ and the lowest (16.70) number of leaves per plant was found from control condition. The highest (24.55) number of leaves per plant was recorded from K₃ which was statistically similar (23.70) with K₂ and the lowest (18.93) number of leaves per plant was observed from control condition at 60 DAT (Figure 5). Potassium enhences plant growth resulting the plant produced the highest number of leaves.





Combined effect of different concentrations of GA₃ and levels of potassium showed significant variation in terms of number of leaves per plant at 30, 45 and 60 DAT (Appendix III). The highest (14.44) number of leaves per plant was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically identical (14.33) with G_2K_2 and the lowest (11.33) was recorded from G_0K_0 at 30 DAT. At 45 DAT the highest (22.00) numbers of leaves per plant was found from G_2K_3 which was identical (21.67) to G_2K_2 , while the lowest (14.67) was observed from G_0F_0 . The highest (26.44) number of leaves per plant was obtained from G_2K_3 which was statistically identical (25.89) with G_2K_2 and the lowest (15.00) number of leaves per plant was recorded from G_0K_0 at 60 DAT (Table 1). From the results it was revealed that both GA₃ concentration and potassium stimulate the growth of cabbage and thus higher number of leaves was produced.

4.3 Spread of plant

Different concentrations of GA₃ showed statistically significant variation for spread of plant at 30, 45 and 60 DAT (Appendix III). The maximum (25.86 cm) plant spreading was recorded from G_2 (85 ppm GA₃) which was followed by G_1 (65 ppm GA₃) and the minimum (23.80 cm) spread of plant was found from G_0 at 30 DAT. At 45 DAT, the maximum (39.42 cm) spread of plant was recorded from G_2 followed by G_1 and the minimum (35.49 cm) was recorded from G_0 . The maximum (66.02 cm) spread of plant was observed from G_2 by G_1 and the minimum (57.91 cm) was found from G_0 at 60 DAT (Figure 6). These results indicated that different concentrations of GA₃ influenced spread of plant.

Different levels of potassium showed significant differences on spread of plant at 30, 45 and 60 DAT (Appendix III). The maximum (25.86 cm) spread of plant was recorded from K_3 which was followed by K_2 , while the minimum (23.74 cm) was recorded from control condition i.e. no potassium followed by K_1 at 30 DAT. At 45 DAT the maximum (39.48 cm) spread of plant was recorded from K_3 which was statistically similar (38.60 cm) to K_2 and the minimum (35.31 cm) spread of plant was recorded from control condition. The maximum (65.42 cm) spread of plant was recorded from K_3 which was statistically similar (64.01 cm) to K_2 , while the minimum (57.90 cm) spread of plant was obtained from control condition i.e. no potassium which was closely (62.80 cm) followed by K_1 at 60 DAT (Figure 7). Potassium fertilizer ensures maximum plant nutrients in available from which help proper growth of plant and the results are the highest spread of plant.

The significant variation was found due to the combined effect of different concentration of GA₃ and level of potassium in terms of spread of plant at 30, 45 and 60 DAT (Appendix III). The maximum (26.66 cm) spread of plant was observed from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (26.42 cm) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha), while the minimum (21.73 cm) was recorded from G_0K_0 at 30 DAT. At 45 DAT the maximum (40.83 cm) spread of plant was found from G_2K_3 which was identical (40.50 cm) to G_2K_2 and the minimum (31.21 cm) was found from G_0F_0 . The maximum (69.28 cm) spread of plant was obtained from G_2K_3 which was identical (67.41 cm) with G_2K_2 , and the minimum (51.44 cm) spread of plant was obtained from G_0K_0 at 60 DAT (Table 1). From the results it was revealed that both GA₃ concentration and potassium inhenced growth of cabbage and the ultimate results are the maximum spread of plant under the trial.

4.4 Length of large leaf

Different concentrations of GA₃ showed significant variation on length of large leaf under the present trial (Appendix IV). The highest (43.22 cm) length of large leaf was found from G_2 (85 ppm GA₃). On the other hand the lowest (36.18 cm) length of large leaf was observed from G_0 (0 ppm GA₃) (Table 2).

Different levels of potassium showed significant difference on length of large leaf (Appendix IV). The highest (42.95 cm) length of large leaf was found from K_3 (150 kg K_2O/ha) which was statistically similar (42.16 cm) to K_2 (135 kg K_2O/ha) and the lowest (37.10 cm) length of large leaf was recorded from control condition (Table 2) i.e. no potassium. Potassium stimulates for optimum growth of plant with large leaf.

The significant variation was found in terms of length of large leaf due to the combined effect of different concentration of GA₃ and level of potassium (Appendix IV). The highest (45.84 cm) length of large leaf was obtained from the treatment combination of G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) which was statistically similar (45.71 cm) to G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha), while the lowest (29.67 cm) length of large leaf was found from G_0K_0 i.e. control condition (Table 3).

4.5 Days from transplanting to head initiation

Days from transplanting to head formation showed statistically significant differences for different concentration of GA₃ (Appendix IV). The lowest (31.36) days from

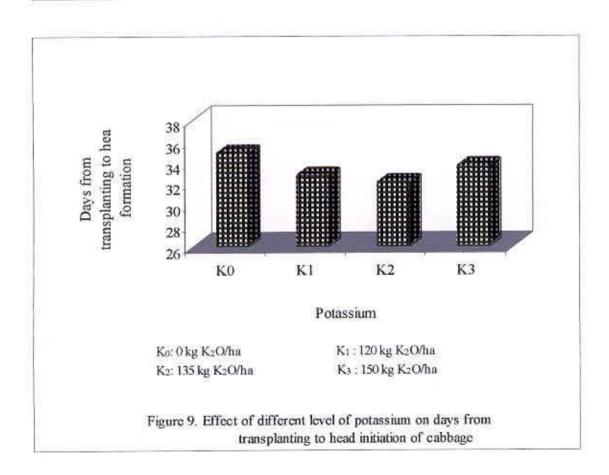
Treatment(s)	Length of large leaf (cm)	Length of stem (cm)	Fresh weight of stem (g)	Diameter of stem (cm)	Dry matter content of stem (%)
Concentration of GA3					
G ₀	36.18 c	7.43 c	39.54 b	4.18 c	10.16 c
Gi	41.80 b	9.27 a	51.83 a	5.02 b	12.66 b
G ₂	43.22 a	8.83 b	52.58 a	5.62 a	13.92 a
LSD(0.05)	1.345	0.255	2.593	.0.178	0.505
Significance Level	0.01	0.01	0.01	0.01	0.01
Potassium					
K ₀	37.10 c	8.25 c	44.57 b	4.51 d	10.38 d
K ₁	39.38 b	8.68 ab	47.46 ab	4.80 c	11.71 c
K ₂	42.16 a	8.71 a	49.42 a	5.09 b	13.04 b
K ₃	42.95 a	8.40 bc	50.48 a	5.37 a	13.85 a
LSD(0.05)	1.553	0.295	2.994	0.205	0.583
Significance Level	0.01	0.01	0.01	0.01	0.01
CV(%)	8.93	9.54	6.38	7.22	4.87

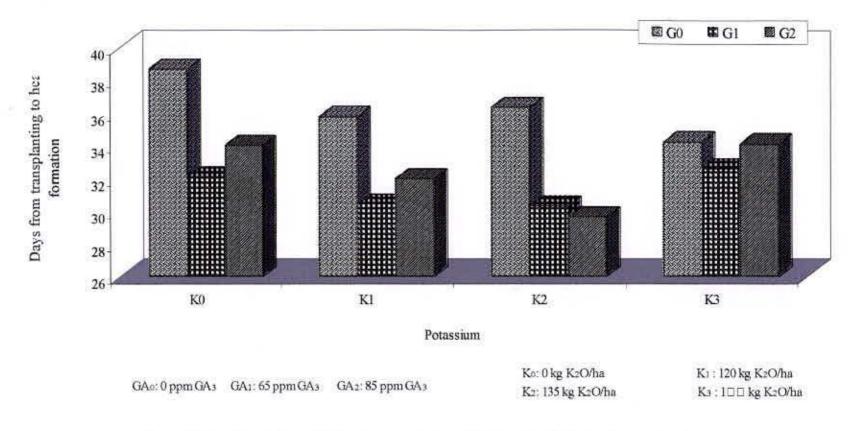
Table 2. Main effect of different concentrations of GA3 and potassium on yield contributing characters of cabbage

 \mathbf{x}

In a column means having similar letter(s) are statistically identical and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

Go: 0 ppm GA3	K ₀ : 0 kg K ₂ O/ha (control)
G1: 65 ppm GA3	K1: 120 kg K2O/ha
G2: 85 ppm GA3	K2: 135 kg K2O/ha
	K ₃ : 150 kg K ₂ O/ha


Treatment(s)	Length of large leaf (cm)	Length of stem (cm)	Fresh weight of stem (g)	Diameter of stem (cm)	Dry matter content of stem (%)
G ₀ K ₀	29.67 f	7.40 de	33.99 f	3.33 f	7.67 f
G ₀ K ₁	36.66 e	7.60 d	38.22 ef	4.25 e	9.75 e
G ₀ K ₂	39.58 cde	7.78 d	44.61 cd	4.58 de	11.31 d
G ₀ K ₃	38.79 de	6.92 e	41.33 de	4.56 de	11.91 cd
G ₁ K ₀	39.88 cd	8.77 c	50.65 ab	4.66 d	11.19 d
G ₁ K ₁	41.89 bc	9.38 ab	52.98 ab	5.11 c	12.85 c
G ₁ K ₂	41.07 cd	9.58 a	49.17 bc	4.82 cd	12.55 c
G ₁ K ₃	44.35 ab	9.34 ab	54.54 ab	5.52 b	14.04 b
G ₂ K ₀	41.75 bcd	8.58 c	49.08 bc	5.54 b	12.28 cd
G ₂ K ₁	39.57 cde	9.05 abc	51.18 ab	5.03 c	12.53 c
G ₂ K ₂	45.84 a	8.76 c .	54.50 ab	5.89 ab	15.28 a
G ₂ K ₃	45.71 a	8.92 bc	55.58 a	6.03 a	15.60 a
LSD(0.05)	2.690	0.511	5.186	0.355	1.010
Significance Level	0.01	0.05	0.05	0.01	0.01
CV(%)	8.93	9.54	6.38	7.22	4.87


Table 3. Combined effect of different concentrations of GA3 and potassium on yield contributing characters of cabbage

In a column means having similar letter(s) are statistically identical and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

G ₀ : 0 ppm GA ₃	K ₀ : 0 kg K ₂ O/ha (control)
G1: 65 ppm GA3	K1: 120 kg K2O/ha
G2: 85 ppm GA3	K2: 135 kg K2O/ha
	K3: 150 kg K2O/ha

38 Days from transplanting to head formation 36 34 32 30 28 26 G2 GO GI Concentration of GA3 GA2; 85 ppm GA3 GA0: 0 ppm GA3 GA1:65 ppm GA3 Figure 8. Effect of different concentration of GA3 on days from transplanting to head initiation of cabbage

.

Figure 10. Combined effect of different concentration of GA3 and level of potassium on days from transplanting to head initiation of cabbage

transplanting to head initiation was recorded from G_1 (65 ppm GA_3) which was statistically identical (32.44) to G_2 (85 ppm GA_3) and the highest (36.25) days from transplanting to head initiation was obtained from G_0 (0 ppm GA_3) under the trial (Figure 8). Patil *et al.* (1987) reported head formation was 13 days earlier with 50 ppm GA_3 .

Different level of potassium showed significant variation for days from transplanting to head formation (Appendix IV). The lowest (32.11) days from transplanting to head initiation was recorded from K₂ (135 kg K₂O/ha) which was statistically similar (32.74) to K₁ (120 kg K₂O/ha), while the highest (34.92) days from transplanting to head formation was recorded from control condition i.e. no potassium which was closely (33.63) followed by K₃ (150 kg K₂O/ha (Figure 9)).

Combined effect of different concentration of GA_3 and level of potassium showed significant differences in terms of days from transplanting to head formation (Appendix IV). The lowest (30.33) days from transplanting to head formation was recorded from the treatment combination of G_1K_2 (65 ppm GA_3 and 135 kg K_2O/ha) which was statistically similar (30.44) to G_1K_1 (65 ppm GA_3 and 120 kg K_2O/ha) and the highest (38.67) days from transplanting to head formation was recorded from G_0K_0 i.e. control condition (Figure 10).

4.6 Length of stem

Different concentration of GA_3 showed statistically significant differences for length of stem (Appendix IV). The highest (9.27 cm) length of stem was recorded from G_1 (65 ppm GA_3) and the lowest (7.43 cm) length of stem was found from G_0 (0 ppm GA_3) under the trial (Table 2).

Different levels of potassium showed significant differences on length of stem (Appendix IV). The highest (8.71 cm) length of stem was found from K_2 (135 kg K_2O/ha) which was statistically similar (8.68 cm) to K_1 (120 kg K_2O/ha), while the lowest (8.25 cm) length of stem was recorded from control condition (Table 2) i.e. no potassium.

The significant variation was found due to the combined effect of different concentration of GA₃ and level of potassium in terms of length of stem (Appendix IV). The highest (9.58 cm) length of stem was observed from the treatment combination of G_1K_2 (65 ppm GA₃ and 135 kg K₂O/ha) which was statistically similar (9.38 cm) to G_1K_1 (65 ppm GA₃ and 120 kg K₂O/ha), and the lowest (6.92 cm) length of stem was recorded from G_0K_3 (Table 3).

4.7 Fresh weight of stem

Different concentration of GA₃ showed statistically significant differences on fresh weight of stem (Appendix IV). The maximum (52.58 g) fresh weight of stem was found from G₂ (85 ppm GA₃) which was statistically similar (51.83 g) to G₁ (65 ppm GA₃). On the other hand, the minimum (39.54 g) fresh weight of stem was obtained from G₀ (0 ppm GA₃) under the trial (Table 2).

Different level of potassium showed significant differences for fresh weight of stem (Appendix IV). The maximum (50.48 g) fresh weight of stem was observed from K_3 (150 kg K_2O/ha) which was statistically similar (49.42 g) to K_1 (47.46g) and K_2 (135 kg K_2O/ha), while the minimum (44.57 g) fresh weight of stem was recorded from control condition (Table 2)

Significant difference was found due to the combined effect of different concentrations of GA₃ and levels of potassium in terms of fresh weight of stem (Appendix IV). The maximum (55.58 g) fresh weight of stem was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) and the minimum (33.99 g) fresh weight of stem was recorded from G_0K_0 i.e. control condition (Table 3).

4.8 Diameter of stem

Different concentration of GA₃ showed statistically significant differences for diameter of stem (Appendix IV). The maximum (5.62 cm) diameter of stem was recorded from G_2 (85 ppm GA₃), while the minimum (4.18 cm) diameter of stem was found from G_0 (0 ppm GA₃) under the trial (Table 2).

Different level of potassium showed significant differences for diameter of stem (Appendix IV). The maximum (5.37 cm) diameter of stem was observed from K_3 (150 kg K_2O/ha) and the minimum (4.51 cm) diameter of stem was recorded from control condition (Table 2).

Statistically significant variation was found due to the combined effect of different concentrations of GA_3 and level of potassium in terms of diameter of stem (Appendix IV). The maximum (6.03 cm) diameter of stem was found from the treatment combination of G_2K_3 (85 ppm GA_3 and 150 kg K_2O/ha) which was statistically similar (5.03 cm) to G_2K_2 (85 ppm GA_3 and 135 kg K_2O/ha) and the minimum (3.33 cm) diameter of stem was observed from G_0K_0 (Table 3).

4.9 Dry matter content stem

Different concentration of GA₃ showed statistically significant differences for dry matter content of stem (Appendix IV). The highest (13.92%) dry matter content of stem was recorded from G_2 (85 ppm GA₃) and the lowest (10.16%) dry matter content of stem was found from G_0 (0 ppm GA₃) under the trial (Table 2).

Different level of potassium showed significant variation for dry matter content of stem (Appendix IV). The highest (13.85%) dry matter content of stem was observed from K_3 (150 kg K_2 O/ha) while the lowest (10.38%) dry matter content of stem was recorded from control condition (Table 2) i.e. no potassium.

In terms of dry matter content of stem was found significant variation was found due to the combined effect of different concentration of GA₃ and levels of potassium (Appendix IV). The highest (15.60%) dry matter content of stem was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (15.28%) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (7.67%) dry matter content of stem was recorded from G_0K_0 (Table 3).

4.10 Number of roots per plant

۱.,

Number of roots per plant showed statistically significant differences for different concentration of GA₃ (Appendix V). The highest (23.81) number of roots per plant was observed from G_2 (85 ppm GA₃) and the lowest (18.77) number of roots per plant was obtained from G_0 (Table 4).

Different levels of potassium showed significant differences on number of roots per plant (Appendix V). The highest (23.41) number of roots per plant was recorded from K₃ (150

kg K₂O/ha) while the lowest (19.99) number of roots per plant was found from control condition (Table 4).

Statistically significant variation was found due to the combined effect of different concentrations of GA₃ and levels of potassium on number of roots per plant (Appendix V). The highest (25.47) number of roots per plant was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (24.87) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (15.40) number of roots per plant was recorded from G_0K_0 (Table 5).

4.11 Length of root

Different concentration of GA₃ showed statistically significant differences for length of roots under the trial (Appendix V). The highest (26.83 cm) length of roots was observed from G_2 (85 ppm GA₃) and the lowest (21.27 cm) length of roots was obtained from G_0 (0 ppm GA₃) under the trial (Table 4).

Different level of potassium showed significant differences for length of roots (Appendix V). The highest (26.50 cm) length of roots was recorded from K₃ (150 kg K₂O/ha) .On the other hand the lowest (22.14 cm) length of roots was obtained from control condition i.e. no potassium (Table 4).

Treatment(s)	Number of roots per plant	Length of roots (cm)	Fresh weight of roots (g)	Thickness of head (cm)	Diameter of head (cm)
Concentration of GA	13				
G ₀	18.77 c	21.27 c	21.75 b	11.33 b	15.68 b
Gı	22.41 b	25.27 b	25.60 a	13.56 a	18.47 a
G ₂	23.81 a	26.83 a	25.69 a	14.39 a	18.88 a
LSD(0.05)	0.571	0.904	0.855	1.014	0.938
Significance Level	0.01	0.01	0.01	0.01	0.01
Potassium					
Ko	19.99 d	22.14 d	23.05 b	11.48 b	15.46 c
Kı	20.94 c	24.01 c	24.80 a	13.07 a	17.55 b
K ₂	22,30 b	25.18 b	25.22 a	13.79 a	18.67 a
K3	23.41 a	26.50 a	24.32 a	14.03 a	19.01 a
LSD(0.05)	0.659	1.043	0.987	1.170	1.083
Significance Level	0.01	0.01	0.01	0.01	0.01
CV(%)	8.11	10.36	4.15	9.14	6.27

¥ =

Table 4. Main effect of different concentrations of GA3 and potassium on yield contributing characters of cabbage

10

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

Go: 0 ppm GA3	K ₀ : 0 kg K ₂ O/ha (control)
G1: 65 ppm GA3	K1: 120 kg K2O/ha
G2: 85 ppm GA3	K ₂ : 135 kg K ₂ O/ha
	K3: 150 kg K2O/ha

43

Treatment(s)	Number of roots per plant	Length of roots (cm)	Fresh weight of roots (g)	Thickness of head (cm)	Diameter of head (cm)
G_0K_0	15.40 g	17.13 f	21.60 d	10.59 d	13.81 d
G ₀ K ₁	18.23 f	21.27 e	21.53 d	10.86 d	15.31 cd
G ₀ K ₂	20.30 e	22.53 de	23.60 c	11.74 d	16.71 bc
G ₀ K ₃	21.13 de	24.17 cd	20.27 d	12.14 cd	16.88 bc
G ₁ K ₀	21.80 cd	23.67 cd	23.53 c	11.39 d	16.29 c
G ₁ K ₁	22.47 bc	25.63 bc	26.49 a	14.13 abc	18.70 ab
G ₁ K ₂	21.73 cd	24.97 bc	26.79 a	14.29 abc	19.10 a
G1K3	23.63 b	26.83 ab	25.59 ab	14.42 ab	19.77 a
G ₂ K ₀	22.77 bc	25.63 bc	24.03 bc	12.47 bcd	16.29 c
G ₂ K ₁	22.13 cd	25.13 bc	26.39 a	14.23 abc	18.64 ab
G ₂ K ₂	. 24.87 a	28.03 a	25.26 abc	15.34 a	20.18 a
G ₂ K ₃	25.47 a	28.50 a	27.09 a	15.51 a	20.39 a
LSD(0.05)	1.142	1.807	1.710	2.027	1.876
Significance Level	0.01	0.01	0.01	0.01	0.01
CV(%)	8.11	10.36	4.15	9.14	6.27

14

Table 5. Combined effect of different concentration of GA3 and potassium on yield contributing characters of cabbage

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

Go: 0 ppm GA3	K ₀ : 0 kg K ₂ O/ha (control)
G1: 65 ppm GA3	K1: 120 kg K2O/ha
G2: 85 ppm GA3	K2: 135 kg K2O/ha
	K3: 150 kg K2O/ha

44

The significant variation was found due to the combined effect of different concentration of GA₃ and level of potassium in terms of length of root (Appendix V). The highest (28.50 cm) length of roots was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (28.03 cm) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (17.13 cm) length of root was recorded from G_0K_0 (Table 5).

4.12 Fresh weight of roots

Different concentrations of GA₃ showed statistically significant differences for fresh weight of roots (Appendix V). The highest (25.69 g) fresh weight of roots was recorded from G_2 (85 ppm GA₃) which was statistically similar (25.60 g) to G_1 (65 ppm GA₃) and the lowest (21.75 g) fresh weight of roots was observed from G_0 (0 ppm GA₃) under the trial (Table 4).

Different levels of potassium showed significant differences on fresh weight of roots (Appendix V). The highest (24.32 g) fresh weight of roots was recorded from K₃ (150 kg K₂O/ha) which was statistically identical (25.22 g and 24.80 g) to K₂ (135 kg K₂O/ha) and K₁ (120 kg K₂O/ha), respectively and the lowest (23.05 g) fresh weight of roots was found from control condition i.e. no potassium (Table 4).

Combined effect of different concentration of GA₃ and level of potassium in terms of fresh weight of root showed statistically significant differences (Appendix V). The highest (27.09 g) fresh weight of roots was observed from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (26.39 g) to G_2K_1 (85 ppm GA₃ and 120 kg K₂O/ha) and the lowest (21.60 g) fresh weight of roots was recorded from G_0K_0 (Table 5).

4.13 Thickness of head (cm)

Different concentrations of GA₃ showed statistically significant differences on thickness of head (Appendix V). The highest (14.39 cm) thickness of head was recorded from G₂ (85 ppm GA₃) which statistically identical (13.56 cm) to G₁ (65 ppm GA₃) and the lowest (11.33 cm) thickness of head was found from G₀ (0 ppm GA₃) under the trial (Table 4). Dharmender *et al.* (1996) reported that combinations and higher concentration of plant growth regulators proved less effective and were uneconomic in comparison to the control.

Different levels of potassium showed significant differences for thickness of head (Appendix V). The highest (14.03 cm) thickness of head was recorded from K_3 (150 kg K_2O/ha) which statistically similar (13.79 cm and 13.07 cm) to K_2 (135 kg K_2O/ha) and K_1 (120 kg K_2O/ha), and the lowest (11.48 cm) thickness of head was found from control condition i.e. no potassium (Table 4). Rao and Subramaniun (1991) observed that the plant K concentration at all stages of growth increased significantly at the level of K_2O application dose.

Statistically significant variation was found due to the combined effect of different concentrations of GA₃ and levels of potassium in terms of thickness of head (Appendix V). The highest (15.51 cm) thickness of head was recorded from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (15.34 cm) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (10.59 cm) thickness of head was recorded from G_0K_0 (Table 5).

4.14 Diameter of head

Statistically significant difference was recorded for different concentrations of GA₃ due to the diameter of cabbage head (Appendix V). The highest (18.88 cm) diameter of head

was recorded from G_2 (85 ppm GA_3) which statistically identical (18.47 cm) to G_1 (65 ppm GA_3) and the lowest (15.68 cm) diameter of head was obtained from G_0 (0 ppm GA_3) under the trial (Table 4). Patil *et al.* (1987) reported the maximum head diameter with GA_3 at 50 ppm.

Different levels of potassium showed significant differences for diameter of head (Appendix V). The highest (19.01 cm) diameter of head was found from K₃ (150 kg K₂O/ha) which statistically similar (18.67 cm) to K₂ (135 kg K₂O/ha), while the lowest (15.46 cm) diameter of head was recorded from control condition i.e. no potassium (Table 4). Aditiya (1993) reported that the Rabi season cabbage (Var.Atlas-70) required 225 kg K₂O /ha for its higher production.

Combined effect of different concentrations of GA₃ and levels of potassium in terms of diameter of head showed significant differences (Appendix V). The highest (20.39 cm) diameter of head was observed from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (20.18 cm) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (13.81 cm) diameter of head was recorded from G_0K_0 (Table 5).

4.15 Weight of loose leaves

nt.

Different concentrations of GA₃ showed statistically significant variation for weight of loose leaves (Appendix VI). The minimum (302.19 g) weight of loose leaves was recorded from G_1 (65 ppm GA₃) and the maximum (345.95 g) weight of loose leaves was observed from G_0 (0 ppm GA₃) under the trial (Table 6).

Different levels of potassium showed significant differences for weight of loose leaves (Appendix VI). The minimum (308.93 g) weight of loose leaves was recorded from K₃

(150 kg K₂O/ha) and the maximum (326.05 g) weight of loose leaves was found from K₂ (135 kg K₂O/ha) (Table 6).

The significant variation was found due to the combined effect of different concentrations of GA₃ and levels of potassium in terms of weight of loose leaves (Appendix VI). The minimum (296.17 g) weight of loose leaves was found from the treatment combination of G_1K_0 (65 ppm GA₃ and 0 kg K₂O/ha) and 150 kg K₂O/ha) and the maximum (367.21 g) weight of loose leaves was recorded from G_0K_2 (Table 7).

4.16 Gross weight of head

4

Different concentrations of GA_3 showed statistically significant variation on gross weight of head (Appendix VI). The highest (2.76 kg) gross weight of head was observed from G_2 (85 ppm GA_3) and the lowest (2.12 kg) gross weight of head was obtained from G_0 (0 ppm GA_3) under the trial (Table 6).

Different levels of potassium showed significant differences for gross weight of head (Appendix VI). The highest (2.97 kg) gross weight of head was found from K₃ (150 kg K₂O/ha) and the lowest (2.05 kg) gross weight of head was recorded from K₀ (control) which was statistically similar (2.07 kg) to K₁ (Table 6). Aditiya (1993) reported that the Rabi season cabbage (Var.Atlas-70) required 225 kg K₂O /ha for its higher production. Combined effect of different concentrations of GA₃ and levels of potassium in terms of gross weight of head was found from the treatment combination of G₂K₃ (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (3.43 kg) to G₃K₂ (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (1.89 kg) gross weight of head was recorded from G₀K₁ (Table 7).

48

Treatment(s)	Weight of loose leaves (g)	Gross weight of head (kg)	Economic yield per plant (kg)	Dry matter content of head (%)	Yield per plot (kg)	Yield per hectare (ton)
Concentration of G	A 3					
G ₀	345.95 a	2.12 c	1.89 b	9.91 c	28.42 b	52.64 b
G ₁	302.19 c	2.60 b	2.23 a	11.81 b	33.42 a	61.90 a
G ₂	312.27 b	2.76 a	2.26 a	12.41 a	33.95 a	62.87 a
LSD(0.05)	8.775	0.060	0.085	0.274	1.261	2.336
Significance Level	0.01	0.01	0.01	0.01	0.01	0.01
Potassium						
Ko	319.88 a	2.05 c	1.72 c	10.10 d	25.78 c	47.75 c
Kı	325.68 a	2.07 c	1.86 b	11.04 c	27.95 b	51.76 b
K ₂	326.05 a	2.89 b	2.43 a	11.95 b	36.43 a	67.47 a
K ₃	308.93 b	2.97 a	2.50 a	12.42 a	37.57 a	69.57 a
LSD(0.05)	10.13	0.069	0.098	0.317	1.456	2.697
Significance Level	0.01	0.01	0.01	0.01	0.01	0.01
CV(%)	6.24	5.73	4.67	7.85	4.67	4.67

2

Table 6. Main effect of different concentration of GA3 and potassium on yield contributing characters and yield of cabbage

뿃

In a column means having similar letter(s) are statistically identical and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

 G₀: 0 ppm GA₃
 K₀: 0 kg K₂O/ha (control)

 G₁: 65 ppm GA₃
 K₁: 120 kg K₂O/ha

 G₂: 85 ppm GA₃
 K₂: 135 kg K₂O/ha

 K₃: 150 kg K₂O/ha
 K₃: 150 kg K₂O/ha

Treatment(s)	Weight of loose leaves (g)	Gross weight of head (kg)	Economic yield per plant (kg)	Dry matter content of head (%)	Yield per plot (kg)	Yield per hectare (ton)
G ₀ K ₀	353.20 a	1.95 g	1.69 e	7.78 g	25.35 e	46.94 e
G ₀ K ₁	353.01 a	1.89 g	1.74 e	9.63 f	26.05 e	48.24 e
G ₀ K ₂	367.21 a	2.28 de	2.07 c	10.94 e	31.00 c	57.41 c
G ₀ K ₃	310.38 bc	2.36 d	2.09 c	11.29 de	31.30 c	57.96 c
G ₁ K ₀	296.17 c	2.18 ef	1.74 e	11.01 e	26.15 e	48.43 e
G ₁ K ₁	303.83 bc	2.17 ef	1.85 de	11.98 c	27.70 de	51.30 de
G ₁ K ₂	306.01 bc	2.96 c	2.56 b	11.66 cd	38.45 b	71.20 b
G1K3	302.73 bc	3.09 b	2.76 a	12.59 b	41.40 a	76.67 a
G ₂ K ₀	310.27 bc	2.01 g	1.72 e	11.50 cde	25.85 e	47.87 e
G ₂ K ₁	320.22 b	2.13 f	2.01 cd	11.52 cde	30.10 cd	55.74 cd
G ₂ K ₂	304.92 bc	. 3.43 a	2.66 ab	13.23 a	39.85 ab	73.80 ab
G ₂ K ₃	313.66 bc	3.48 a	2.67 ab	13.39 a	40.00 ab	74.07 ab
LSD(0.05)	17.55	0.120	0.169	0.549	2.522	4.672
Significance Level	0.01	0.01	0.01	0.01	0.01	0.01
CV(%)	6.24	5.73	4.67	7.85	4.67	4.67

Table 7. Combined effect of different concentrations of GA3 and potassium on yield contributing characters and yield of cabbage

4 5

르

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability

 G₀: 0 ppm GA₃
 K₀: 0 kg K₂O/ha (control)

 G₁: 65 ppm GA₃
 K₁: 120 kg K₂O/ha

 G₂: 85 ppm GA₃
 K₂: 135 kg K₂O/ha

 K₃: 150 kg K₂O/ha

50

4.17 Economic yield per plant

4

Statistically significant variation for economic yield per plant was recorded for different concentration of GA₃ (Appendix VI). The highest (2.26 kg) economic yield per plant was recorded from G_2 (85 ppm GA₃) which was statistically similar (2.23 kg) to G_1 (65 ppm GA₃) and the lowest (1.89 kg) economic yield per plant was observed from G_0 (0 ppm GA₃) under the trial (Table 6). Chauhan and Bordia (1971) reported maximum weight of head (1.72 kg) was obtained with 50ppm GA₃ as against 0.81 kg under control.

Different levels of potassium showed significant differences for economic yield per plant (Appendix VI). The highest (2.50 kg) economic yield per plant was recorded from K_3 (150 kg K_2O/ha) which was statistically identical (2.43 kg) to K_2 (135 kg K_2O/ha) and the lowest (1.72 kg) economic yield per plant was found from K_0 (control) which was closely (1.86 kg) followed by K_1 (Table 6). Rao and Subramaniun (1991) observed that the plant K concentration at all stages of growth increased significantly at the level of K_2O application dose.

Statistically significant variation was found due to the combined effect of different concentrations of GA₃ and level of potassium in terms of economic yield per plant (Appendix VI). The highest (2.76 kg) economic yield per plant was observed from the treatment combination of G_1K_3 (65 ppm GA₃ and 150 kg K₂O/ha) and the lowest (1.69 kg) economic yield per plant was recorded from G_0K_0 (Table 7). Dharmender *et al.* (1996) reported that combinations and higher concentration of plant growth regulators proved less effective and were uneconomic in comparison to the control.

4.18 Dry matter content of head

Different concentration of GA₃ showed statistically significant variation on dry matter content of head (Appendix VI). The highest (12.41%) dry matter content of head was found from G₂ (85 ppm GA₃) and the lowest (9.91%) dry matter content of head was obtained from G₀ (0 ppm GA₃) under the trial (Table 6). Chauhan and Bordia (1971) reported maximum dry matter content for the application of growth regulators.

Dry matter content of head showed significant differences for different level of potassium (Appendix VI). The highest (12.42%) dry matter content of head was observed from K_3 (150 kg K_2O/ha) which was closely (11.95%) followed by K_2 (135 kg K_2O/ha) and the lowest (10.10%) dry matter content of head was recorded from K_0 .(Table 6). Aditiya (1993) reported that the Rabi season cabbage (Var.Atlas-70) required 225 kg K_2O/ha for its higher dry matter production.

The significant variation was found due to the combined effect of different concentrations of GA₃ and levels of potassium in terms of dry matter content of head (Appendix VI). The highest (13.39%) dry matter content of head was found from the treatment combination of G_2K_3 (85 ppm GA₃ and 150 kg K₂O/ha) which was statistically similar (13.23%) to G_2K_2 (85 ppm GA₃ and 135 kg K₂O/ha) and the lowest (7.78%g) dry matter content of head was recorded from G_0K_0 (Table 7).

4.19 Yield per plot

Different concentrations of GA₃ showed statistically significant variation on yield per plot (Appendix VI). The highest (33.95 kg) yield per plot was found from G₂ (85 ppm GA₃) which was statistically similar (33.42 kg) to G₁ (65 ppm GA₃) and the lowest (28.42 kg) yield per plot was obtained from G₀ (0 ppm GA₃) under the trial (Table 6). Dharmender *et al.* (1996) reported that combinations and higher concentration of plant growth regulators proved less effective and were uneconomic in comparison to the control.

Different levels of potassium showed significant differences for yield per plot (Appendix VI). The highest (37.57 kg) yield per plot was observed from K_3 (150 kg K₂O/ha) which was statistically identical (36.43 kg) to K_2 (135 kg K₂O/ha) and the lowest (25.78 kg) yield per plot was recorded from K_0 (Table 6). Aditiya (1993) reported that the Rabi season cabbage (Var.Atlas-70) required 225 kg K₂O /ha for its higher production.

The significant variation was found due to the combined effect of different concentration of GA₃ and level of potassium in terms of yield per plot (Appendix VI). The highest (41.40 kg) yield per plot was found from the treatment combination of G_1K_3 (65 ppm GA₃ and 150 kg K₂O/ha) and the lowest (25.35 kg) yield per plot was recorded from G_0K_0 (Table 7).

4.20 Yield per hectare

4

Yield per hectare showed statistically significant differences for different concentrations of GA₃ (Appendix VI). The highest (62.87 ton) yield per hectare was observed from G_2 (85 ppm GA₃) which was statistically similar (61.90 ton) to G_1 (65 ppm GA₃) and the lowest (52.64 ton) yield per hectare was found from G_0 (0 ppm GA₃) under the trial

53

(Table 6). Islam *et al.* (1993) reported that two sprays with 50 ppm GA₃ was suitable for higher yield.

A significant difference on yield per hectare was recorded for different level of potassium (Appendix VI). The highest (69.57 ton) yield per hectare was recorded from K_3 (150 kg K₂O/ha) which was statistically identical (67.47 ton) to K_2 (135kg K₂O/ha) and the lowest (47.75 ton) yield per hectare was observed from K_0 (Table 6). Rao and Subramaniun (1991) observed that the plant K concentration at all stages of growth increased significantly at the level of K₂O application dose. Tianxiu *et al.*(1994) found that cabbage yield was higher with 150 kg K₂O/ha than with no potassium.

Combined effect of different concentrations of GA_3 and levels of potassium showed significant variation in terms of yield per hectare (Appendix VI). The highest (76.67 ton) yield per hectare was found from the treatment combination of G_1K_3 (65 ppm GA_3 and 150 kg K₂O/ha) which was statistically similar (74.07 ton) to G_2K_3 (85 ppm GA_3 and 135 kg K₂O/ha) and the lowest (46.94 ton) yield per hectare was recorded from G_0K_0 (Table 7).

4.21 Economic analysis

N

Input costs for land preparation, seed cost, GA₃, fertilizer, thinning, irrigation and man power required for all the operations from sowing to harvesting of cabbage were recorded for unit plot and converted into hectare. Prices of cabbage were considered on the basis of Farmgate market rate. The economic analysis was done to find out the gross rturn, net return and the benefit cost ratio in the present experiment in the table 8. Table 8. Cost and return of cabbage cultivation as influenced by different concentration of GA₃ and level of potassium

Treatment(s)	Cost of production (Tk./ha)	Yield of cabbage	Gross return (Tk./ha)	Net return (Tk./ha)	Benefit cos ratio
G_0K_0	146139	46.94	234700	88561	1.61
G_0K_1	150165	48.24	241200	91035	1.61
G_0K_2	150668	57.41	287050	136382	1.91
G ₀ K ₃	151171	57.96	289800	138629	1.92
G_1K_0	153296	48.43	242150	88854	1.58
G_1K_1	157322	51.30	256500	99178	1.63
G ₁ K ₂	157825	71.20	356000	198175	2.26
G1K3	158328	76.67	383350	225022	2.42
G_2K_0	155980	47.87	239350	83370	1.53
G_2K_1	160006	55.74	278700	118694	1.74
G_2K_2	160509	73.80	369000	208491	2.29
G ₂ K ₃	161012	74.07	370350	209338	2.30

G ₀ : 0 ppm GA ₃	K ₀ :
G1: 65 ppm GA3	K ₁ :
G2: 85 ppm GA3	K2:

ŧ.

K₀: 0 kg K₂O/ha (control) K₁: 120 kg K₂O/ha K₂: 135 kg K₂O/ha K₃: 150 kg K₂O/ha

Market price of cabbage @ Tk. 5,000/ton Gross return = Total yield (t/ha) × Tk. 5,000 Net return = Gross return - Total cost of production Benefit Cost Ratio (BCR) = Gross return/Total cost of production

4.21.1 Gross return

٨

In the combination of GA₃ and potassium showed different gross return in present study. (Table 8). The highest gross return (Tk. <u>383</u>,350/ha) was recorded from G₁K₃ (65 ppm GA₃ and 150 kg K₂O/ha) and the second the highest gross return (Tk. <u>370</u>,350/ha) was obtained from G₂K₃ (85 ppm GA₃ and 150 kg K₂O/ha). The lowest gross return (Tk. <u>234</u>,700/ha) was recorded from G₀K₀ (0 ppm GA₃ and 0 kg K₂O/ha).

4.21.2 Net return

In case of net return different treatment combination showed various amount of net return. The highest net return (Tk. 225,022/ha) was recorded from G_1K_3 and the second highest net return (Tk. 209,338/ha) was recorded from G_2K_3 . The lowest net return (Tk. 88,561/ha) was recorded from G_0K_0 (Table 8).

4.21.3 Benefit cost ratio

A wide range of difference in respect of benefit cost ratio was obtained from different treatment combinations (Table 8). The highest (2.42) benefit cost ratio was recorded of G_1K_3 and the second highest (2.30) was recorded from G_2K_3 . The lowest befit cost ratio (1.53) was recorded from G_2K_0 . From economic point of view, it is apparent that the treatment combination of G_1K_3 was more profitable compare to other treatments combination.

Chapter 5 Summary, Conclusion and Recommendation

CHAPTER IV

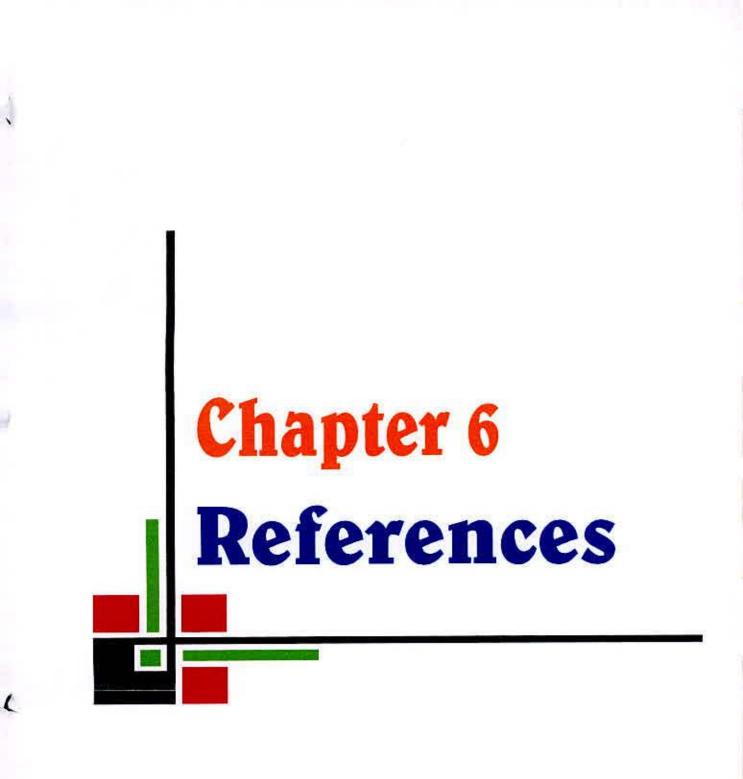
SUMMARY AND CONCLUSION

The experiment was conducted at the Horticulture Farm, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, during the period from October, 2007 to January 2008 to study the effect of different concentrations of GA₃ and levels of potassium on growth and yield of cabbage. The experiment consisted of two factors i.e. (A): concentration of GA₃ (3 levels) i.e. 0 ppm (G₀), 65 ppm (G₁), 85 ppm (G₂) and (B) level of potassium (4 levels) i.e. 0 kg K₂O/ha (K₀), 120 kg K₂O/ha (K₁), 135 kg K₂O/ha (K₂), 150 kg K₂O/ha (K₃). The number of treatment combinations was 12. The data obtained for different characters were statistically analyzed to find out the significance of the different concentrations of GA₃ and levels of potassium on growth and yield of cabbage.

The tallest (41.46 cm) plant was recorded from G_2 and the shortest (35.85 cm) was found from G_0 at 60 DAT. The highest (24.08) number of leaves per plant was found from G_2 and the lowest (19.89) was recorded from G_0 at 60 DAT. The maximum (66.02 cm) spread of plant was observed from G_2 , while the minimum (57.91 cm) was found from G_0 at 60 DAT. The highest (43.22 cm) length of large leaf was found from G_2 and the lowest (36.18 cm) was observed from G_0 . The lowest (31.36) days from transplanting to head initiation was recorded from G_1 and the highest (36.25) was obserded from G_0 . The highest (8.83 cm) stem length was recorded from G_1 , while the lowest (7.43 cm) was observed from G_0 . The maximum (52.58 g) fresh weight of stem was found from G_2 and the minimum (39.54 g) was obtained from G_0 . The maximum (5.62 cm) diameter of stem was recorded from G_2 and the minimum (4.18 cm) was found from G_0 . The highest (23.81) number of roots per plant was observed from G_2 and the lowest (18.77) was obtained from G_0 . The highest (26.83 cm) length of roots was observed from G_2 and the lowest (21.27 cm) was obtained from G_0 . The highest (14.39 cm) thickness of head was recorded from G_2 and the lowest (11.33 cm) was found from G_0 . The highest (18.88 cm) diameter of head was recorded from G_2 and the lowest (15.68 cm) was obtained from G_0 . The minimum (302.19 g) weight of loose leaves was estimated from G_1 and the maximum (345.95 g) was observed from G_0 . The highest (2.76 kg) gross weight of head was observed from G_2 and the lowest (2.12 kg) was obtained from G_0 . The highest (2.26 kg) economic yield per plant was recorded from G_2 and the lowest (1.89 kg) was found from G_0 . The highest (12.41%) dry matter content of head was found from G_2 and the lowest (9.91%) was from G_0 . The highest (62.87 ton) yield per hectare was observed from G_2 and the lowest (52.64 ton) was found from G_0 .

The tallest (41.04 cm) plant was recorded from K_3 and the shortest (35.80 cm) plant was obtained from control condition at 60 DAT. The highest (24.55) number of leaves per plant was recorded from K_3 and the lowest (18.93) was observed from control condition at 60 DAT. The maximum (65.42 cm) spread of plant was recorded from K_3 and the minimum (57.90 cm) was obtained from control condition at 60 DAT. The highest (42.95 cm) length of large leaf was found from K_3 , while the lowest (37.10 cm) was recorded from control condition. For head formation, K2 treatment required the lowest days (32.11) from transplanting, while the highest (34.92) was required for control condition. The highest (8.71 cm) length of stem was found from K_2 , while the lowest (8.25 cm) was recorded from control condition. The maximum (50.48 g) fresh weight of stem was observed from K_3 , while the minimum (4.57 g) was recorded from control condition. The maximum (5.37 cm) diameter of stem was observed from K_3 , while the minimum (4.51 cm) was recorded from control condition. The highest (23.41) number of roots per plant was recorded from K_3 , while the lowest (19.99) was found from control control condition.

condition. The highest (26.50 cm) length of roots was recorded from K_3 and the lowest (22.14 cm) was obtained from control condition. The highest (14.03 cm) thickness of head was recorded from K_3 and the lowest (11.48 cm) was found from control condition. The highest (19.01 cm) diameter of head was found from K_3 and the lowest (15.46 cm) was recorded from control condition. The minimum (308.93 g) weight of loose leaves was recorded from K_3 and the maximum (326.05 g) was found from K_2 . The highest (2.97 kg) gross weight of head was found from K_3 and the lowest (2.05 kg) was recorded from K_0 . The highest (2.50 kg) economic yield per plant was recorded from K_3 and the lowest (1.72 kg) was found from K_0 . The highest (12.42%) dry matter content of head was observed from K_3 and the lowest (10.10%) was recorded from K_0 . The highest (69.57 ton) yield per hectare was recorded from K_3 and the lowest (47.75 ton) was observed from K_0 .


x

In combined effect the tallest (43.69 cm) plant was obtained from the treatment combination G_2K_3 , and the shortest (31.35 cm) was obtained from G_0K_0 at 60 DAT. The highest (26.44) number of leaves per plant was obtained from G_2K_3 and the lowest (15.00) was recorded from G_0K_0 at 60 DAT. The maximum (69.28 cm) spread of plant was obtained from G_2K_3 and the minimum (51.44 cm) was obtained from G_0K_0 at 60 DAT. The highest (45.84 cm) length of large leaf was observed from G_2K_2 and the lowest (29.67 cm) was found from G_0K_0 . The lowest (30.33) days from transplanting to head formation was recorded from G_1K_2 and the highest (38.67) was recorded from G_0K_0 . The highest (9.58 cm) length of stem was observed from G_0K_3 . The maximum (55.58 g) fresh weight of stem was found from the treatment combination of G_1K_2 and the lowest (6.92 cm) was recorded from G_2K_3 and the minimum (33.99 g) was recorded from G_0K_0 . The maximum (6.03 cm) diameter of stem was found from the treatment combination of G_2K_3 and the minimum (3.33 cm) was observed from G0K0. The highest (25.47) number of roots per plant was found from G2K3 and the lowest (15.40) was recorded from G0K0. The highest (28.50 cm) length of roots was found from G₂K₃ and the lowest (17.13 cm) was recorded from G₀K₀. The highest (15.51 cm) thickness of head was recorded from the treatment combination of G₂K₃ and the lowest (10.59 cm) was recorded from G₀K₀. The highest (20.39 cm) diameter of head was observed from G2K3 and the lowest (13.81 cm) was recorded from G0K0. The minimum (296.17 g) weight of loose leaves was found from G1K0, while the maximum (367.21 g) was recorded from G0K2. The highest (3.48 kg) gross weight of head was found from G₂K₃ and the lowest (1.89 kg) was recorded from G₀K₁. The highest (2.76 kg) economic yield per plant was observed from G1K3 and the lowest (1.69 kg) was recorded from G_0K_0 . The highest (13.39%) dry matter content of head was found from G₂K₃ and the lowest (7.78%g) was recorded from G₀K₀. The highest (76.67 ton) yield per hectare was found from G_1K_3 and the lowest (46.94 ton) was recorded from G₀K₀. The highest gross return (Tk. 383,350/ha) was recorded from G₁K₃ and the lowest gross return (Tk. 234,700/ha) was recorded from G_0K_0 . The highest (2.42) benefit cost ratio was recorded of G1K3 and the lowest benefit cost ratio (1.53) was recorded from G_2K_0 . From economic point of view, it is apparent that the treatment combination of G1K3 was more profitable compare to other treatment.

Therefore, it may be suggested that 85 ppm concentrations of GA_3 and 150 kg K_2O/ha can be used to obtain maximum growth and higher yield of cabbage production For ensuring the higher yield and economic return further such studies should be carried out in other agro-ecological zones of the country before final recommendation.

1

60

References

- Aditya, D. K. 1993. Vegetable Production and Development in Bangladesh. Report of Agri. Res. Project Phase II, BARC/BARI, AVRDC. Dhaka. pp. 68-70.
- Anonymous, 1989. Fertilizer on the yield of cabbage. Annual Report, BARI, Joydevpur, p. 130.
- Anonymous, 1991. Effect of chemical fertilizer and organic manure on the yield of cabbage. Annual Rrport, BARI. Joydebpur. pp. 254-287.
- Abdalla, I. M., Helal, R. M. and Zaki, M. E. 1980. Studies on the effect of some growth regularors on yield and quality of cauliflower. *Ann. Agric. Sci.*, **12**: 199-200.
- Badawi, M. A. and EL-Sahhar, K. F. 1979. Influence of some growth substances on different characters of cabbage. *Egypt. J. Hort.*, 6 (2):221-235.

¢.

- BARC. 1997. Fertilizer Recommendation Guide. Bangladesh Agricultural Resarch Council, Farmgate, New Airport Road, Dhaka-1215. p. 73.
- BBS. 2000. Monthly Statistical Bulletin. Bangladesh Bureau of Statistics, Statistics Division, Ministry of Planning, Govt. of People's Rapublic of Bangladesh. p. 55

- Bose, T. K. and Som, M. G. 1986. Vegetable crops in India. NayaProkash., Calcutta, India. pp. 167-180.
- Chauhan, O. V. S. 1986. Vegetable production in India. Ram Prasad and sons., India. pp. 131-140.
- Cauhan, K. S. and Singh. 1970. Response of cabbage on foliar applications of gibberellic acid and urea. *Indian J. Hort.*, 27: 68-70.
- Chauhan, K. S. and Bordia, N. S. 1971. Effect of gibberellic acid, beta-naphthooxyacetic acid and 2, 4-dichlorophenoxy acetic acid as pre-sowing seed treatment on growth and yield of cabbage (*Braica oleracea var. capitata L.*). *Indian J. Hort.*, 28: 57-59.
- Chhonkar, V. S. and Singh, R. 1985. Effect of NAA and 2, 4-D on growth, yield and quality of cabbage (*Braica oleracea var. capitata* L.). *Indian J. Hort.*, 22: 322-329.

1

Dharmender, K., Guja, K. D., Paliwal, R. and Kumar, D. 1996. Yield and yield attributes of cabbage as influenced by GA₃ and NAA. *Crop Res. Hisar*, **12**(1): 120-122.

- FAO. 1997. Year book of Statistics. Food and Agricultural Organizations of the United Nations, Rome, Italy, 50: 122-123.
- FAO. 1999. Quarterly Bulletin of Statistics. Food and Agricultural Organizations of the United Nations, Rome, Italy, 10(3/4); 76-77.
- Farooque, A. M. and Islam, A. F. M. S. 1989. Effect of spacing and different management practices on the growth and yield of cabbage. *Bangladesh Hort.*, 17(1): 45-47.
- Halim, G. M. A., Ahmed, M. S., Islam, A. and Hossain, S. 1994. Effect of different doses of NPK on growth and yield of cabbage. *Ann. Bangladesh Agric.*, 4(2): 157-160.
- Islam, M. T. 1985. The effect of some growth regulators on yield and biomass production in cabbage. *Panjab Veg. Grower*, 20: 11-16.
- Islam, M. A., Siddique, A. and Kashem, M. A. 1993. Effect of growth regulators on the growth, yield and ascorbic acid contentof cabbage. *Bangladesh J. Agril. Sci.*, 20(1): 21-27.

1

Jothi, L. J., Mani, A. K., Papiah, C. M. and Ryagopalan, R. 1993. Influence of NPK and Azospirillum on the yield of cabbage. *South Indian Hort.*, **14** (5): 270-272.

- Kato, T. and Sooen, A. 1980. Physiological studies of head formation on cabbage. J. Jap. Soc. Hort. Sci., 48(4): 426-434.
- Leopoid, A. C. 1963. Auxins and Plant Growth. Berkeley and Los Angels. Univercity of California Press. p. 5.
- Mishra, H. P. and Singh, B. P. 1986. Studies on the nutrients and growth regulator interaction in "Snowball-16" cauliflower. Prog. Hort., 18 (1-2): 77-82.
- Muthoo, A. K., Kumar, S. and Maurya, A. N. 1987. Studies on the effect of foliar application of GA₃, NAA and molybdenum on growth and yield of Cauliflower (*Brassica oleraceea Var. botrytis*). *Haryana J. Hort. Sci.*, 16 (1-2): 115-120.
- Nickell, L. G. 1982. Plant growth regulators. Springer-Verlag Berlin Heidelberg, New York. pp. 1-3.
- Nason, A. and Mc. Elory, W. D. 1963. Models of action of the essential mineral elements. In: Plant physiology, ed. F. C. Steward, Academic Press, New York. pp. 138-139.

Nieuwhof, M. 1969. Cole Crops. Leonard Hill Books, London. 353p.

- Nunung-Nurtica. 1980. The effects of NPK levels on the yield of cabbage. Bull. Penelition Hort., 8(4): 9-14. [Cited from Hort. Abstde. 50(6); 5135, 1980]
- Pendey, S. N. and Sinha, B. K. 1987. Physiology. Revised edition. Vikash Publishing House Pvt. Ltd., New Delhi- 110014. pp: 444-445.
- Patil, A. A., Maniur, S. M. and Nalwadi, U. G. 1987. Effect of GA₃ and NAA on growth and yield of cabbage. South Indian Hort., 35 (5): 393-394.
- Rao, M. H. and. Subramanium, T. R 1991. Effect of potassium application on the yield of and content of potassium, calcium and madnesium in cabbage, okra, tomato and beet-root. J. Potassium Res., 7 (3): 190-197.

Rashid, M. M. 1993. Sabjibiggan. Bangla Academy, Dhaka. pp 189-196.

- Roy, D. S. K., Kabir, J., Chatterjee, R. and Mitra, S.K. 1991 Effect of post harvest foliar spray of some chemicals on storage behavior of onion. Onion for the Tropics, 3: 23-25
- Samuelsen, R. T. and Petterson, N. K. 1977. A fertilizer trial with N, P and K for white cabbage at Pasvikdalin. Skning- og- fersoek-I- landbraket., 28 (2): 97-110.

- Samant, P. K. S., Sahu, S. K and Singh, D. N. 1992. Studies on balance fertilizer use for cabbage in acid clay loam soils of orissa. Orissa J. Agril. Res., 59 (1-2): 45-49.
- Srivastava, R. P. 1960. Effect of treatment on tomato seeds with plant regulators. J. Sci. Res. BHU, 11(1); 80-85.
- Srivastava, R. P. 1965. Effect of presowing treatment with growth regulatorsand GA₃ on important vegetable crops. III Radish. Allahabad Farm, **39** (6): 246-251.
- Srivastava, R. P. 1966. research on horticultural crops at Chaubattia. Indian Hort., 10 (4): 9-11,34.
- Tianxiu, He., Chenghui, He. Hardter, R. and We. CH. 1994. The effect of K and Mg fertilizers applied to cabbage yield, quality and economic return. Potash review, 2: 1-5,
- Vijoy, K. N. R. and Kumar, V. 2000. Effect of plant growth regulators on cauliflower cv. Plant Subhra. Orisa J. Hort., 28 (1): 65-67.

1

Yabuta, T., Sumuki, Y. Asoc, K. and Hayashi. T. 1981. Effect of foliar spray of plant hormones on yilnd and quality of cabbage. J. Jep. Soc. Hort. Sci., 50 (3): 360-364.

- Yetistiren, G. and Vural, H. 1991. A study on Yalova-1 cabbage variety (*Brassica oleraceea Var. capitata*) for development, head formation and uptake of nutrients. Fen-Bilimleri- enstitusu- dergisi, 2(1):151-154 [cited from Hort. Abstde 62(4): 3146, 1992]
- Zee, S. Y.1978. The effect of GA3 on plant growth before and after transplanting, Acta. Hort., 185-189

Appendix I. Physical & Chemical properties of soil in the experimental field

Physical properties of soil in the experimental field

Soil physical properties	Analytical data				
Soil texture	Sandy loam				
Sand (%)	30.65				
Silt (%)	38.19				
Clay (%)	31.16				
Soil Type	Shallow Red Brown Terrace soil				
Soil Series	Tejgoan				

Chemical properties of soil in the experimental field

Analytical data	
5.6	
0.078	
0.0015	
0.0053	
0.88	
12:1	
	5.6 0.078 0.0015 0.0053 0.88

Source: SRDI, Framgate, Dhaka.

Year		Average* air temperature (°C)				Average*	Total**
rear	Month	Maximum	Minimum	Mean	Rainfall (mm)	Relative humidity (%)	Sunshine hours
	October	30.5	24.3	27.4	417	80	142
2007	November	29.7	20.1	24.9	5	65	192.2
2007	December	26.9	15.8	21.35	0	68	217.03
	January	24.6	12.5	18.7	0	66	171.01
2008	February	27.1	16.8	21.95	0	64	158.68
	March	31.5	19.6	25.55	160	47	255.01

Appendix II. Monthly Air temperature, Rainfall, Relative humidity and Sunshine of the Experimental site during the study (October, 2007 to February, 2008)

* Monthly Average

** Monthly Total

Source: The Meteorological Department (Weather division) of Bangladesh, Agargaon, Dhaka.

Source: Bangladesh The Meteorological Department (Climate division), Agargaon, Dhaka-1207

Source of	Degrees of	Mean square								
variation	freedom	Plant height (cm) at			Number of leaves per plant at			Spread of p	lant (cm) at	
		30 DAT	45 DAT	60 DAT	30 DAT	45 DAT	60 DAT	30 DAT	45 DAT	60 DAT
Replication	2	0.044	2.072	0.539	0.197	0.003	0.486	0.346	0.015	1.930
Conc. of GA ₃ (A)	2	38.828**	62.696**	100.543**	2.673**	36.581**	54.653**	13.599**	50.784**	208.997**
Potassium (B)	3	13.274**	39.491**	47.115**	5.289**	20.558**	56.418**	7.567**	28.995**	96.172**
Interaction (A×B)	6	1.352*	3.221*	3.660*	0.340*	2.093*	4.115*	0.939**	3.923**	7.876**
Error	22	0.397	0.981	1.052	0.117	0.628	1.484	0.093	0.066	2.236

Appendix III. Analysis of variance of the data on plant height, number of leaves and spread of plant of cabbage as influenced by different concentration of GA3 and potassium

.

** Significant at 0.01 level of probability;

* Significant at 0.05 level of probability

Appendix IV. Analysis of variance of the data on yield contributing characters of cabbage as influenced by different concentration of GA₃ and potassium

Source of variation	Degrees of	Mean square								
	freedom	Length of large leaf (cm)	Days from transplanting to head formation	Length of stem (cm)	Fresh weight of stem (g)	Diameter of stem (cm)	Dry matter content of stem (%)			
Replication	2	0.916	0,131	0.119	4.460	0.024	0.022			
Conc. of GA ₃ (A)	2	166.381**	79.133**	11.118**	644.137**	6.300**	43.989**			
Potassium (B)	3	64.591**	13.393**	0.443**	60.682**	1.235**	20.917**			
Interaction (A×B)	6	17.795**	6.886*	0.230*	22.400*	0.404**	1.606**			
Error	22	2.524	2.548	0.091	9.378	0.044	0.356			

** Significant at 0.01 level of probability;

* Significant at 0.05 level of probability

Source of variation	Degrees of	Mean square								
	freedom	Number of roots per plant	Length of roots (cm)	Fresh weight of roots (g)	Thickness of head (cm)	Diameter of head (cm)				
Replication	2	1.419	1.021	0.375	3.210	0.109				
Conc. of GA ₃ (A)	2	81.280**	98.410**	60.725**	29.916**	36.332**				
Potassium (B)	3	20.342**	30.720**	7.923**	11.852**	23.047**				
Interaction (A×B)	6	4.660**	5.082**	4.832**	2.977*	2.366*				
Error	22	0.455	1.139	1.020	1.433	1.228				

Appendix V. Analysis of variance of the data on yield contributing characters of cabbage as influenced by different concentration of GA₃ and potassium

** Significant at 0.01 level of probability;

* Significant at 0.05 level of probability

Appendix VI. Analysis of variance of the data on yield contributing characters and yield of cabbage as influenced by different concentration of GA₃ and potassium

Source of variation	Degrees of	Mean square								
	freedom	Weight of loose leaves (g)	Gross weight of head (kg)	Economic yield per plant (kg)	Dry matter content of head (%)	Yield per plot (kg)	Yield per hectare (ton)			
Replication	2	41.020	0.005	0.004	0.064	0.908	3.114			
Conc. of GA ₃ (A)	2	6303.060**	1.344**	0.496**	20.411**	111.603**	382.725**			
Potassium (B)	3	574.375**	2.304**	1.409**	9.523**	317.022**	1087.180**			
Interaction (A×B)	6	711.026**	0.245**	0.087**	1.320**	19.684**	67.504**			
Error	22	107.417	0.005	0.010	0.105	2.219	7.611			

** Significant at 0.01 level of probability;

* Significant at 0.05 level of probability

Appendix VII. Production cost of cabbage per hectare

A. Input cost

Treatment(s)	Labour	Ploughing	Seed	ed Water for plant Cost of Manure and fertilizers					141	Insecticide/	Sub Total
	cost	cost	Cost	Establishment	GA3	Cowdung	Urea	TSP	MP	pesticides	(A)
G ₀ K ₀	16000.00	6000.00	3000.00	2500.00	0.00	20000.00	1200.00	2700.00	0.00	5000.00	56400.00
G ₀ K ₁	16000.00	6000.00	3000.00	2500.00	0.00	20000.00	1200.00	2700.00	3600.00	5000.00	60000.00
G ₀ K ₂	16000.00	6000.00	3000.00	2500.00	0.00	20000.00	1200.00	2700.00	4050.00	5000.00	60450.00
G ₀ K ₃	16000.00	6000.00	3000.00	2500.00	0.00	20000.00	1200.00	2700.00	4500.00	5000.00	60900.00
G ₁ K ₀	17000.00	6000.00	3000.00	2500.00	5400.00	20000.00	1200.00	2700.00	0.00	5000.00	62800.00
G ₁ K ₁	17000.00	6000.00	3000.00	2500.00	5400.00	20000.00	1200.00	2700.00	3600.00	5000.00	66400.00
G1K2	17000.00	6000.00	3000.00	2500.00	5400.00	20000.00	1200.00	2700.00	4050.00	5000.00	66850.00
G1K3	17000.00	6000.00	3000.00	2500.00	5400.00	20000.00	1200.00	2700.00	4500.00	5000.00	67300.00
G2K0	18000.00	6000.00	3000.00	2500.00	6800.00	20000.00	1200.00	2700.00	0.00	5000.00	65200.00
G ₂ K ₁	18000.00	6000.00	3000.00	2500.00	6800.00	20000.00	1200.00	2700.00	3600.00	5000.00	68800.00
G ₂ K ₂	18000.00	6000.00	3000.00	2500.00	6800.00	20000.00	1200.00	2700.00	4050.00	5000.00	69250.00
G ₂ K ₃	18000.00	6000.00	3000.00	2500.00	6800.00	20000.00	1200.00	2700.00	4500.00	5000.00	69700.00

G₀: 0 ppm GA₃ G₁: 65 ppm GA₃ G₂: 85 ppm GA₃ K₀: 0 kg K₂O/ha (control) K₁: 120 kg K₂O/ha K₂: 135 kg K₂O/ha K₃: 150 kg K₂O/ha

ě.

72

Appendix VII. Contd.

B. Overhead cost (Tk./ha)

Treatment(s)	Cost of lease of land for 6 months (13% of value of land Tk. 6,00000/year	Miscellaneous cost (Tk. 5% of the input cost)	Interest on running capital for 6 months (Tk. 13% of cost/year)	Sub total (Tk) (B)	Total cost of production (Tk./ha) [Input cost (A)+ overhead cost (B)]
G ₀ K ₀	78000	2820	8919	89739	146139
G_0K_1	78000	3000	9165	90165	150165
G_0K_2	78000	3023	9196	90218	150668
G ₀ K ₃	78000	3045	9226	90271	151171
G_1K_0	78000	3140	9356	90496	153296
G ₁ K ₁	78000	3320	9602	90922	157322
G ₁ K ₂	78000	3343	9633	90975	157825
G ₁ K ₃	78000	3365	9663	91028	158328
G ₂ K ₀	78000	3260	9520	90780	155980
G ₂ K ₁	78000	3440	9766	91206	160006
G ₂ K ₂	78000	3463	9796	91259	160509
G ₂ K ₃	78000	3485	9827	91312	161012

Go: 0 ppm GA3 G1: 65 ppm GA3 G2: 85 ppm GA3 K₀: 0 kg K₂O/ha (control) K1: 120 kg K2O/ha K2: 135 kg K2O/ha K3: 150 kg K2O/ha

ার্ডবাংগা কৃষি বিশ্ববিদ্যা বংগ্রাজন নং **পুঞ্জি (শ** TOT Omora Tel3 09

73

CONUTE: UNIVERSITY

Ibrary

Re 05/17/12