GROWTH AND YIELD OF SAU SHADA BHUTTA-3 UNDER DIFFERENT SPACING AND IRRIGATION FREQUENCY IN RABI SEASON

MAKSUDA CHOWDHURY

DEPARTMENT OF AGRONOMY

SHER-E-BANGLA AGRICULTURAL UNIVERSITY

DHAKA-1207

JUNE, 2021

GROWTH AND YIELD OF SAU SHADA BHUTTA-3 UNDER DIFFERENT SPACING AND IRRIGATION FREQUENCY IN RABI SEASON

BY

MAKSUDA CHOWDHURY REGISTRATION NO: 14-06278

A Thesis

Submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE (M.S.) IN AGRONOMY

SEMESTER: JANUARY - JUNE, 2021

Approved by:

Prof. Dr. Md. Jafar Ullah Supervisor Assoc. Prof. Dr. Anisur Rahman Co-Supervisor

Prof. Dr. Tuhin Suvra Roy Chairman Examination Committee

DEPARTMENT OF AGRONOMY

Sher-e-Bangla Agricultural University

Sher-e-Bangla Nagar

Dhaka-1207

CERTIFICATE

This is to certify that thesis entitled, "GROWTH AND YIELD OF SAU SHADA BHUTTA-3 UNDER DIFFERENT SPACING AND IRRIGATION FREQUENCY IN RABI SEASON" submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE (M.S.) in AGRONOMY, embodies the result of a piece of bona-fide research work carried out by MAKSUDA CHOWDHURY, Registration no. 14-06278 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that such help or source of information, as has been availed of during the course of this investigation has duly been acknowledged.

Date:

Place: Dhaka, Bangladesh

Prof. Dr. Md. Jafar Ullah

Department of Agronomy Sher-e-Bangla Agricultural University, Dhaka-1207

Dedicated To My Beloved Parents And Respected **Teachers** Whose Prayers, Efforts And Wishes Are an Inspiration

ACKNOWLEDGEMENTS

All praises to the Almighty Allah, the great, the gracious, merciful and supreme ruler of the universe who enables me to complete this present piece of work for the degree of Master of Science (M.S.) in the Department of Agronomy.

The author would like to express her deepest sense of gratitude, respect to her research supervisor, **Prof. Dr. Md. Jafar Ullah**, Department of Agronomy, Sher- e- Bangla Agricultural University, for his kind and scholastic guidance, untiring effort, valuable suggestions, inspiration, extending generous help and encouragement during the research work and guidance in preparation of manuscript of the thesis.

The author sincerely expresses her deepest respect and boundless gratitude to her cosupervisor **Assoc. Prof. Dr. Anisur Rahman**, Department of Agronomy, for his helpful suggestion and valuable advice during the preparation of this manuscript.

It is highly appreciating words for **Prof. Dr. Tuhin Suvra Roy**, Chairman, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka along with faculties of the Department of Agronomy, Sher-e-Bangla Agricultural University for their rendered novel services towards me as their student.

The author would like to express her deepest respect and boundless gratitude to all respected teachers of Dept. of Agronomy, Sher-e-Bangla Agricultural University, for this valuable teaching, sympathetic co-operation and inspirations throughout the course of this study and suggestions and encouragement to research work. The author thanks to the departmental and farm staff for their active help during the experimental work. The author feels proud to express her sincere appreciation and gratitude to Ministry of Science and Technology, The People's Republic of Bangladesh for awarding her National Science and Technology (NST) fellowship.

At last but not the least, the author feels indebtedness to her beloved parents and sister whose sacrifice, inspiration, encouragement and continuous blessing paved the way to her higher education and reach at this stage. May Allah bless us all.

The Author

GROWTH AND YIELD OF SAU SHADA BHUTTA-3 UNDER DIFFERENT SPACING AND IRRIGATION FREQUENCY IN RABI SEASON

ABSTRACT

An experiment was conducted at Sher-e-Bangla Agricultural University farm, Dhaka to investigate the effect of different spacing and irrigation frequency on the growth and vield response of Shada bhutta-3 during October-2019 to February-2020. The experiment was consisted of two factors. Factor A: Irrigation frequencies (3) viz; I₁: Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and Factor B: Different spacings (4) viz; S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm. The experiment was laid out in split plot design with three replications. Results indicated that irrigation frequency, different spacing and their combination had significant effect on growth, yield and yield contributing characters of Shada bhutta-3. In case of irrigation frequencies the maximum cob length plant⁻¹ (17.26 cm), cob circumference plant⁻¹ (14.94 cm), grain weight cob^{-1} (90.44 g) and grain yield (9.04 t ha^{-1}) were observed in I₁ treatment. At different spacing the maximum cob length plant⁻¹ (17.26 cm), cob circumference plant⁻¹ 1 (15.44 cm), number of rows cob⁻¹ (14.52), number of grains row⁻¹ (28.40), and 1000 grains weight (396.67 g) were observed in S_4 treatment. The maximum grain yield (9.37 t ha⁻¹) was observed in S₁ treatment. In case of combination, maximum grain yield (9.54) t ha⁻¹) was observed in I₁S₁ (I₁: 30 days irrigation interval along with spacing S₁:40 \times 20 cm) treatment combination whereas minimum grain yield (7.45 t ha⁻¹) was observed in I₃S₄ treatment combination.

LIST OF CONTENTS

CHAPTER	TITLE	PAGE
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	LIST OF CONTENTS	iii
	LIST OF TABLES	vii
	LIST OF FIGURES	viii
	LIST OF APPENDICES	xi
	LIST OF PLATES	xii
	LIST OF ABBREVIATION	xiii
Ι	INTRODUCTION	1
II	REVIEW OF LITERATURE	4
2.1	Effect of irrigation frequencies	4
2.2	Effect of different spacing	10
III	MATERIALS AND METHODS	21
3.1	Experimental period	21
3.2	Site description	21
3.2.1	Geographical location	21
3.2.2	Agro-Ecological Zone	21
3.3	Climate	22
3.4	Soil	22
3.5	Planting materials	22
3.6	Description of the variety	22
3.7	Major diseases and management	23
3.8	Experimental details	23
3.9	Experimental treatment details and combinations	24
3.9.1	Experimental treatment	24
3.9.2	Treatment combinations	24
3.9.3	Experimental design	24

CHAPTER	TITLE	PAGE
3.10	Detail of experimental preparation	24
3.10.1	Preparation of experimental land	24
3.10.2	Fertilizer application	25
3.10.2	Seed sowing and maintaining spacing	25
3.11	Intercultural operations	25
3.11.1	Gap filling and thinning	25
3.11.2	Weeding	25
3.11.2	Earthing up	25 25
3.11.5	Application of irrigation water	25
3.11.4	Pest and disease control	25 26
3.11.5	General observations of the experimental site	20 26
	•	
3.11.7	Harvesting, threshing and cleaning	26 26
3.11.8	Drying	26
3.12	Crop sampling	26
3.13	Data collection	26
3.14	Procedure of recording data	27
3.14.1	Plant height (cm) at different DAS	27
3.14.2	Number of leaves plant ⁻¹ (No.)	27
3.14.3	Leaf area plant ⁻¹ (cm ²) at different DAS	27
3.14.4	Dry matter weight plant ⁻¹ at different DAS	28
3.14.5	Cob length plant ⁻¹	28
3.14.6	Cob circumference plant ⁻¹	28
3.14.7	Number of grain rows cob ⁻¹	28
3.14.8	Number of grains row ⁻¹ in cob	28
3.14.9	Number of grains cob ⁻¹	28
3.14.10	Weight of 1000 grains	29

LIST OF CONTENTS (Cont'd)

CHAPTER	TITLE	PAGE
3.14.11	Chaff weight plant ⁻¹	29
3.14.12	Shell weight plant ⁻¹	29
3.14.13	Grain weight cob ⁻¹	29
3.14.14	Cob weight plant ⁻¹	29
3.14.15	Shelling percentage	29
3.14.16	Grain yield (t ha ⁻¹)	29
3.14.17	Stover yield (t ha ⁻¹)	30
3.14.18	Biological yield (t ha ⁻¹)	30
3.14.19	Harvest Index (%)	30
3.15	Statistical data analysis	30
IV	RESULTS AND DISCUSSION	31
4.1	4.1 Plant growth parameters	31
4.1.1	Plant height (cm)	31
4.1.2	No. of leaves plant ⁻¹	35
4.1.3	Leaf area plant ⁻¹ (cm ²)	39
4.1.4	Dry matter weight plant ⁻¹ (g)	42
4.2	4.2 Yield contributing characters	46
4.2.1	Cob length plant ⁻¹	46
4.2.2	Cob circumference plant ⁻¹	48
4.2.3	No. of rows cob ⁻¹	51
4.2.4	No. of grains row ⁻¹	54
4.2.5	No. of grains cob ⁻¹	55
4.2.6	1000 grains weight (g)	57
4.2.7	Chaff weight cob ⁻¹ (g)	60
4.2.8	Shell weight cob ⁻¹	62
4.2.9	Grain weight cob ⁻¹ (g)	64

LIST OF CONTENTS (Cont'd)

CHAPTER	TITLE	PAGE
4.2.10	Cob weight plant ⁻¹ (g)	66
4.2.11	Shelling percentage (%)	68
4.3	4.3 Yield characters	72
4.3.1	Grain yield (t ha ⁻¹)	72
4.3.2	Stover yield (t ha ⁻¹)	73
4.3.3	Biological yield (t ha ⁻¹)	75
4.4.4	Harvest index (%)	77
\mathbf{V}	SUMMARY AND CONCLUSION	81
	REFERENCES	87
	APPENDICES	97
	LIST OF PLATES	105

LIST OF CONTENTS (Cont'd)

LIST OF TABLES

TABLE	TITLE	PAGE
1	Combined effect of different irrigation frequencies and plant	34
	spacing on plant height of shada bhutta at different DAS	
2	Combined effect of irrigation frequency and spacing on number	38
	of leaves plant ⁻¹ of shada bhutta at different DAS	
3	Combined effect of irrigation frequency and spacing on leaf area	42
	plant ⁻¹ of shada bhutta at different DAS	
4	Combined effect of irrigation frequency and spacing on dry	46
	matter plant ⁻¹ of shada bhutta at different DAS	
5	Combined effect of irrigation frequency and spacing on cob	51
	length and cob circumference plant ⁻¹ of shada bhutta	
6	Combined effect of irrigation frequency and spacing on no. of	60
	row cob ⁻¹ , no. grains row ⁻¹ , no. of grains cob ⁻¹ and 1000 grains	
	weight of shada bhutta	
7	Combined effect of irrigation frequency and spacing on chaff	71
	weight $cob^{-1}(g)$, shell weight $cob^{-1}(g)$, grain weight $cob^{-1}(g)$,	
	cob weight plant ⁻¹ (g) and shelling percentage (%) of shada	
	bhutta at harvest	
8	Combined effect of irrigation frequencies and spacing on grain	80
	yield, stover yield, biological yield and harvest index of shada	
	bhutta at harvest	

FIGURE TITLE PAGE 1 Effect of irrigation frequencies on plant height of shada bhutta at 32 different DAS 2 Effect of spacing on plant height of shada bhutta at different 33 DAS 3 Effect of irrigation frequencies on number of leaves plant⁻¹ of 36 shada bhutta at different DAS Effect of spacing on number of leaves plant⁻¹ of shada bhutta at 4 37 different DAS Effect of irrigation frequencies on leaf area plant⁻¹ of shada 5 40 bhutta at different DAS Effect of spacing on leaf area plant⁻¹ of shada bhutta at different 6 41 DAS Effect of irrigation frequencies on dry matter weight plant⁻¹ of 7 43 shada bhutta at different DAS Effect of spacing on dry matter weight plant⁻¹ of shada bhutta at 8 44 different DAS 9 Effect of irrigation frequencies on cob length plant⁻¹ of white 47 maize Effect of spacings on cob length plant⁻¹ of shada bhutta 10 48 11 Effect of irrigation frequencies on cob circumference plant⁻¹ of 49 white maize Effect of spacings on cob circumference plant⁻¹ of white maize 12 50 Effect of irrigation frequencies on number of rows cob⁻¹ of white 13 52 maize 14 Effect of spacings on number of rows cob⁻¹ of shada bhutta 53 Effect of irrigation frequencies on number of grains row⁻¹ of 15 54 white maize Effect of spacings on number of grains row⁻¹ of shada bhutta 16 55

LIST OF FIGURES

FIGURE	TITLE	PAGE
17	Effect of irrigation frequencies on number of grains cob ⁻¹ of	56
	shada bhutta	
18	Effect of spacings on number of grains cob ⁻¹ of shada bhutta	57
19	Effect of irrigation frequencies on 1000 grains weight (g) of	58
	shada bhutta	
20	Effect of spacings on 1000 grains weight (gm) of shada bhutta	59
21	Effect of irrigation frequencies on chaff weight cob ⁻¹ (g) of	61
	shada bhutta	
22	Effect of spacings on chaff weight cob ⁻¹ (g) of white maize	62
23	Effect of irrigation frequencies on shell weight cob ⁻¹ (g) of	63
	shada bhutta	
24	Effect of spacings on shell weight cob ⁻¹ (g) of shada bhutta	64
25	Effect of irrigation frequencies on grain weight cob ⁻¹ (g) of	65
	shada bhutta	
26	Effect of spacings on grain weight cob ⁻¹ (g) of shada bhutta	66
27	Effect of irrigation frequencies on cob weight plant ⁻¹ (g) of	67
	shada bhutta	
28	Effect of spacings on cob weight plant ⁻¹ (g) of shada bhutta	68
29	Effect of irrigation frequencies on shelling percentage (%) of	69
_,	white maize	07
30	Effect of spacings on shelling percentage (%) of white maize	70
31	Effect of irrigation frequencies on grain yield (t ha ⁻¹) of white	72
	maize	
32	Effect of spacings on grain yield (t ha ⁻¹) of shada bhutta	73
33	Effect of irrigation frequencies on stover yield (t ha ⁻¹) of shada	74
	bhutta	

FIGURE	TITLE	PAGE
34	Effect of spacings on stover yield (t ha ⁻¹) of shada bhutta	75
35	Effect of irrigation frequencies on biological yield (t ha ⁻¹) of shada bhutta	76
36	Effect of spacings on biological yield (t ha ⁻¹) of shada bhutta	77
37	Effect of irrigation frequencies on harvest index (%) of shada bhutta	78
38	Effect of spacings on harvest index (%) of shada bhutta	79

LIST OF FIGURES (Cont'd)

APPENDIX	TITLE	PAGE
Ι	Map showing the experimental location under study	97
II	Monthly meteorological information during the period from	98
	October, 2019 to March, 2020.	
III	Characteristics of soil of experimental field	99
IV	Layout of the experimental field	100
V	Analysis of variance of the data of plant height of shada	101
	bhutta at different DAS	
VI	Analysis of variance of the data of number of leaves of	101
	shada bhutta at different DAS	
VII	Analysis of variance of the data of plant leaf area of shada	102
	bhutta at different DAS	
VIII	Analysis of variance of the data of dry matter weight of	
	shada bhutta at different DAS	
IX	Analysis of variance of the data of yield contributing	103
	characters of shada bhutta	
X	Analysis of variance of the data of yield contributing	103
	characters of shada bhutta	
XI	Analysis of variance of the data of yield contributing	104
	characters of shada bhutta	
XII	Analysis of variance of the data of yield characters of	104
	shada bhutta	

LIST OF APPENDICES

PLATES	TITLE	PAGE
1	Shada bhutta seed sowing in the experimental field	105
2	Shada bhutta plant at seedling stage	105
3	Weeding of the experimental field of white maize	106
4	Shada bhutta at vegtative stage	106
5	Field exhibition by honorable supervisor	107
6	Tassel formation of white maize	107
7	General view of the experimental plot with sign board	108
8	Shada bhutta at maturity stage	108

LIST OF PLATES

LIST OF ABBREVIATIONS		
AEZ	Agro-Ecological Zone	
AIS	Agriculture Information Service	
Anon.	Anonymous	
BARC	Bangladesh Agricultural Research Council	
BARI	Bangladesh Agricultural Research Institute	
BBS	Bangladesh Bureau of Statistics	
BINA	Bangladesh Institute of Nuclear Agriculture	
BNNC	Bangladesh National Nutrition Council	
CIMMYT	International Maize and Wheat Improvement Center	
CV %	Percent of Coefficient of Variance	
CV.	Cultivar (s)	
DAS	Days After Sowing	
eds.	Editors	
et al.	et alii (and others)	
etc.	et cetera (and other similar things)	
FAO	Food and Agriculture Organization	
HI	Harvest Index	
i.e.	id est (that is)	
IARI	Indian Agricultural Research Institute	
ICAR	Indian Council of Agricultural Research	
IRRI	International Rice Research Institute	
L.	Linnaeus	
LSD	Least Significant Difference	
МОР	Muriate of Potash	
NPTs	New Plant Types	
SAU	Sher-e-Bangla Agricultural University	
SRDI	Soil Resources and Development Institute	
TDM	Total Dry Matter	
TSP	Triple Super Phosphate	
UNDP	United Nations Development Programme	
var.	Variety	
viz.	Namely	

CHAPTER I

INTRODUCTION

Maize (*Zea mays* L.) is the world"s widely grown highland cereal and primary staple food crop in many developing countries (Kandil, 2013). It was originated in America and first cultivated in the area of Mexico more than 7,000 years ago, and spread throughout North and South America (Hailare, 2000). This cereal crop belongs to the family Poaceae. It is a typical monoecious plant highly cross-pollinated (95%), self-pollination may reach up to 5% (Poehlman and Sleper, 1995). It has very high yield potential, there is no cereal on the earth, which has so immense potentiality and that is why it is called "Queen of cereals" (FAO, 2002). It ranks 1st in respect of yield per unit area, 2nd in respect total production and 3rd after wheat and rice in respect of acreage in cereal crops (Zamir *et al.*, 2013).

Maize is grown as a fodder, feed and food crop. It is also used as raw material for manufacturing pharmaceutical and industrial products (Hamid *et al.*, 2019). Wheat, rice and maize are the most important cereal crops in the world but maize is the most popular due to its high yielding, easy of processing, readily digested and costs less than other cereals (Jaliya *et al.*, 2008). Maize grain contains 70% carbohydrate, 10% protein, 4% oil, 10.4% albumin, 2.3% crude fiber, 1.4% ash (Nasim *et al.*, 2012). Moreover, it contains 90 mg carotene, 1.8 mg niacin, 0.8 mg thiamin and 0.1 mg riboflavin per 100 g grains (Chowdhury and Islam, 1993). Maize oil is used as the best quality edible oil.

Its world average yield is 27.80 q ha⁻¹ maize ranks first among the cereals and is followed by rice, wheat, and millets, with average grain yield of 22.5, 16.3 and 6.6 q ha⁻¹, respectively (Nasim *et al.*, 2012).The yield variability depends on adopting improved agronomic managements (Salam *et al.*, 2010; Ranu *et al.*, 2018; *Mannan et al.*, 2019; Islam *et al.*, 2020a; Islam *et al.*, 2020b). Introduction of maize in Bangladesh as human food can be a viable alternative for sustaining food security as the productivity of maize much higher than rice and wheat (Ray *et al.*, 2013). It provides many of the B vitamins and essential minerals along with fibre, but lacks some other nutrients, such as vitamin B₁₂ and vitamin C. Maize has been a recent introduction in Bangladesh. Rice maize cropping system has been expanded (Timsina *et al.*, 2010) rapidly in the northern districts of Bangladesh mainly in response to increasing demand for poultry feed (BBS, 2016). Maize production of Bangladesh increased from 3,000 tons in 1968 to 3.03 million tons in 2017 growing at an average annual rate of 28.35 % (FAO, 2019).

There are two kinds of maize in respect of grain colour; yellow and white. Worldwide, the yellow maize is mainly used as fodder while the white ones are consumed as human food (FAO, 2002). The currently grown maize in this country is yellow type, which is mainly adapted importing genetic materials from CIMMYT. Again, although there are some indigenous local maize in the south east hills those have also not improved for having higher yields (Ullah et al., 2016). Maize currently grown in Bangladesh is of yellow type and is used in the feed industry. Hybrid maize cultivation area has increased at the rate of about 20-25% per year since nineties as the yield potential of hybrid maize is greater than those of local races (Ullah et al., 2017a; Ullah et al. 2017b; Fatima et al., 2019; Shompa et al., 2020;). Now-a-days, there are many government and non government organizations are working for increasing maize production in Bangladesh. Bangladesh Agricultural Research Institute (BARI) has developed seven open pollinated and 11 hybrid varieties whose yield potentials are 5.50-7.00 t ha⁻¹ and 7.40- $12.00 \text{ t} \text{ ha}^{-1}$, respectively, which are well above the world average of $3.19 \text{ t} \text{ ha}^{-1}$ (Nasim et al., 2012). Different varieties respond differently to input supply, cultivation practices and prevailing environment etc during the growing season (Ullah et el., 2018a; Ullah et el., 2018b; Ullah et el., 2018c; Bithy and Ahamed, 2018). The low productivity of maize is attributed to many factors like decline of soil fertility, poor agronomic practices (such as proper management of planting configuration, irrigation interval, weeding, thinning, earthing up etc), and limited use of input, insufficient technology generation, poor seed quality, disease, insect, pest and weeds. In general the yield productivity of any crop in this country is low which is generally attributed to the poor agronomic management (Ullah et al., 2017).

One of the most important considerations in increasing and stabilizing agricultural production is through irrigation and drainage development, reclamation of degraded lands, and wise use of water resources (Mintesinot, Verplancke, Van Ranst, & Mitiku, 2004; Seckler, 1998). Higher yield up to 9-11 t ha⁻¹ can be obtained using hybrid seeds, balanced fertilizers and better management practices (Mondal *et al.*, 2014).

The development of irrigation and agricultural water management holds significant potential to improve productivity and reduce vulnerability to climactic volatility in any country (Heydari, 2014; Ullah *et al.*, 2019). Irrigation implies the application of suitable water to crops in sufficient amount at the suitable time (Molden *et al.*, 2010; Islam *et al.*, 2020). Salient features of any improved method of irrigation is the controlled application of the required amount of water at desired time, which leads to minimization of range of variation of the moisture content in the root zone , thus reducing stress on the plants. Irrigation scheduling is the process of determining when to irrigate and how much irrigation water to apply (Ahmad, Wajid, Ahmad, Cheema, & Judge, 2019; Filintas *et al.*, 2007; Guo, Gao, Tang, Liu, & Chu, 2015).

Agronomic management, especially spacing which significantly influence on yield, since it is ultimately correlated with plant population, root development, plant growth and fruiting (Davi *et al.*, 1995; Ahmmed *et al.*, 2020; Akbar *et al.* 2016;). Maize differs in its responses to plant spacing (Luque *et al.*, 2006). Closer spacing leading to overcrowding, enhanced interplant competition for incident photosynthetic photon flux density and soil rhizosphere resource, resulting reduction yield per plant because it"s influence hormonally mediated apical dominance, exaggerated barrenness, and finally decreases the number of ears produced per plant and kernels set per ear (Sangoi, 2001). Wider spacing causes low density of population promotes dense vegetative growth, increased weed density due to more feeding area available and remain nutrient and moisture unutilized thereby decrease in total yield. The best optimum spacing is one, which enables the plants to make the better use of the conditions at their disposal (Lawson & Topham, 1985). Keeping all points in minds mentioned above, the proposed research work was undertaken to achieve the following objectives;

Objectives:

- To examine the effect of irrigation frequency on the growth, yield and yield contributing characters of white maize variety SAU Shada Bhutta-3.
- 2. To study the effect of different spacing on the growth and productivity of white maize variety SAU Shada Bhutta-3.
- 3. To evaluate the combined effect of irrigation frequency and spacing on the growth and yield of white maize variety SAU Shada Bhutta-3.

CHAPTER II

REVIEW OF LITERATURE

An attempt was made in this section to collect and study relevant information available regarding the effect of irrigation frequencies and different spacing on the growth and yield of white maize to gather knowledge helpful in conducting the present piece of work.

2.1 Effect of irrigation frequencies

2.1.1 Plant height

Ullah *et al.* 2019 founded significant variations in respect of plant height at different irrigation timings. The longest plants (41.41, 71.62, 183.6 and 186.1 cm) with I₄ treatment (Four irrigations at 15, 30, 60 and 90 DAS) and the shortest plants (33.83, 44.77, 122.7 and 127.4 cm) with I₀ (control) treatment at the respective growth stages.

Baloch *et al.* (2014) reported that delayed 1st irrigation up to 30 days after sowing impacted the plant height adversely.

Abd El-Halim and Abd El-Razek (2013) conducted a field experiments in 2010 and 2011 to study the effects of DRFI with two irrigation intervals 7 days and 14 days on maize yield, water saving, water productivity and some economic parameters such as net return and investment ratio compared with the conventional ridged-furrow planting technique (RFI) with irrigation at 14-day intervals and optimal irrigation interval for maize under DRFI (Double ridge-furrow planting technique) was also determined. Result showed that, Double ridged-furrow planting with irrigation at 7- day intervals proved superior to increase plant height (2.96 & 2.98 m) and water productivity in both year compared to the 14-day interval and the conventional treatment.

Elzubeir and Mohamed (2011) indicated that 10 days irrigation interval gave the highest values of plant height (201 & 205 cm) compered to others irrigation intervals in both year.

Ibrahim and Hala Kandil (2007) found that the highest values of plant height, ear characters (length, diameter and weight) as well as grains yield of corn plants were obtained under an irrigation interval of 10 days followed by 14 and 18 days; generally

prolonging the irrigation interval to18 days decreased the growth, yield and chemical constituent of corn plants.

2.1.2 Number of leaves

Ullah *et al.* 2019 reported that number of leaves plant⁻¹ due to the effect of irrigation interval.

Baloch *et al.* (2014) showed that maximum number of green leaves plant⁻¹ (13.42) on average was achieved in crop given 1st irrigation at 20 days after sowing, 2nd at 35 days and 3rd after 50 days of sowing (T₁); by the delay in the first irrigation the number of green leaves plant⁻¹ slightly decreased to (12.70) and (11.10) in T₃ and T₄ treatments, respectively.

2.1.3 Dry matter weight

Shen *et al.* 2020 revealed that the maximum total dry matter weight $(4.46 \& 4.37 \text{ kg} \text{ m}^{-2})$ was observed in six days irrigation intervals compared to others treatment in both years.

Tefera (2020) conducted a study to determine the optimal irrigation scheduling and fertilizer rate for better water use efficiency under irrigated agriculture and reported that the plot received an optimal irrigation interval of 14 days in a combination of 25% more than the recommended fertilizer rate (292.24 kg/ha) had significantly higher effects on above-ground biomass (18.25 t /ha) and on grain yield (4.8 t/ha) of irrigated maize in the study area.

Ullah *et al.* 2019 reported that the highest dry weight plant⁻¹ was found in I₄ (Four irrigations at 15, 30, 60 and 90 DAS) treatment.

Taiz and Zeiger (2009) reported that the low availability of water may interfere with the photosynthetic activity, reducing the growth and, consequently reducing the biomass accumulation of the plants.

2.1.4 Cob length

Ullah *et al.* 2019 reported that cob length of maize ranged from 26.52 to 19.59 cm, and the longest cob was found in I₄ (Four irrigations at 15, 30, 60 and 90 DAS) treatment. The lowest cob length 19.59 cm was recorded treatment I₀ (Control).

Elzubeir and Mohamed (2011) reported that prolonging irrigation intervals reduce cob length. Experiment result indicated that 10 days irrigation interval gave the highest values of cob length (17 & 17 cm) compered to others irrigation intervals in both year.

2.1.5 No of row cob⁻¹

Ullah *et al.* 2019 reported that different irrigation frequency effect on number of row cob^{-1} and the maximum number of row cob^{-1} was found in I₄ (Four irrigations at 15, 30, 60 and 90 DAS) treatment.

Elzubeir and Mohamed (2011) reported that 10 days irrigation interval gave the highest number of rows cob^{-1} (14 & 15) compared to others irrigation intervals in both year.

2.1.6 No. of grains cob⁻¹

Shen *et al.* 2020 reported that the highest number of grains cob^{-1} (524.6 & 540.6) was observed in six days irrigation intervals (D6 treatment) compared to others treatment in both years.

Ullah *et al.* 2019 reported that among different Irrigation frequencies, four irrigations at 15, 30, 60 and 90 DAS (I₄) showed the maximum no. of row cob^{-1} (14.73).

Elzubeir and Mohamed (2011) reported that 10 days irrigation interval gave the maximum number of grains cob⁻¹ (281 & 397) compared to others irrigation intervals in both year.

2.1.7 1000 grain weight

Shen *et al.* 2020 revealed that the maximum 1000 grain weight (385.& 422 g) was observed in six days irrigation intervals (D6) treatment compared to others treatment in both years.

Ullah *et al.* 2019 founded significant variation in respect of 100-grain of maize due to different irrigation frequency.

Abd El-Halim and Abd El-Razek (2013) conducted a field experiments in 2010 and 2011 (maize growth seasons) to study the effects of DRFI with two irrigation intervals 7 days and 14 days on maize yield, water saving, water productivity and some economic parameters such as net return and investment ratio compared with the

conventional ridged-furrow planting technique (RFI) with irrigation at 14-day intervals. Result revealed that double ridged-furrow planting with irrigation at 7-day intervals proved superior to increase 1000 grain weight (369.3 & 372.5 g) and water productivity in both year compared to the 14-day interval and the conventional treatment.

Elzubeir and Mohamed (2011) reported that 10 days irrigation interval gave the highest values 1000 seed yield (220 & 200 g) compared to others irrigation intervals in both year.

2.1.8 Grain yield

Tefera (2020) conducted a study to determine the optimal irrigation scheduling and fertilizer rate for better water use efficiency under irrigated agriculture. Experimental result revealed that the maximum water use efficiency of 2.05 kg/m³ was obtained at the irrigation interval of 14 days, and the highest level of fertilizer rate. Hence, the use of 14 days of optimal irrigation interval and 25% more fertilizer than the recommended rate is advisable because the grain yield and crop water use efficiency had been improved in the study area.

Shen *et al.* 2020 revealed that the six irrigation intervals (D6) recorded the highest $(20.6-21.0 \text{ t ha}^{-1})$ in both years . In 2016, the grain yield of D6 was 3.8% and 10.1% higher than that of D9 and D12, respectively; in 2017, the grain yield of D6 was 6.6%, 5.0%, 9.4%, and 22.1% higher than that of D3, D9, D12, and D15, respectively.

Ullah *et al.* 2019 founded significant variation was observed on grain yield in case of frequent irrigation in the field. It was found that the highest grain yield(10.61 t ha⁻¹) was achieved from I₄ and it was statistically similar with I₃ treatment showing the grain yield of 10.54 t ha⁻¹. On the other hand, the lowest grain yield (5.00 t ha⁻¹) was found in I₀ (control).

Surface irrigation is the traditional irrigation method applied in about 80% of the irrigated area in Egypt with greater water losses leading to profile drainage. The double ridge-furrow planting technique (DRFI) uses a practical way to reduce the applied water quantities. Therefore, Abd El-Halim and Abd El-Razek (2013) conducted a field experiments in 2010 and 2011 (maize growth seasons) to study the

effects of DRFI with two irrigation intervals 7 days and 14 days on maize yield, water saving, water productivity and some economic parameters such as net return and investment ratio compared with the conventional ridged-furrow planting technique (RFI) with irrigation at 14-day intervals. Optimal irrigation interval for maize under DRFI was also determined. Regardless of irrigation intervals, smaller depth of applied water was observed with DRFI treatments compared to RFI treatment. Consequently, with DRFI treatments, more water could be saved compared with RFI treatment in both seasons. Double ridged-furrow planting with irrigation at 7-day intervals proved superior to increase the grain yield (7133 kg ha⁻¹) and water productivity compared to the 14-day interval and the conventional treatment.

Dahmardeh (2011) found that "the highest seed yield was obtained under irrigation interval of 9 days but the highest biological yield under irrigation interval of 7 days, generally, yield of corn plants was decreased by temporal extent the irrigation interstice to 15 days.

Elzubeir and Mohamed (2011) indicated that 10 days irrigation interval gave the highest values of grain yield (4540 & 6074 kg ha⁻¹) compared to others irrigation intervals in both year.

Parvizi *et al.* (2011) reported that for optimum irrigation management and increasing water use efficiency increase yield of maize and suggested that irrigation interval is 6 days during the last vegetation growth stage and initial tussling stage, and 8 days in the other growth stages increase yield of maize

Ibrahim and Hala Kandil (2007) found that the highest values of plant height, ear characters (length, diameter and weight) as well as grains yield of corn plants were obtained under an irrigation interval of 10 days followed by 14 and 18 days; generally prolonging the irrigation interval to 18 days decreased the growth, yield and chemical constituent of corn plants.

2.1.9 Stover yield

Ullah *et al.* 2019 carried out an experiment at Sher-e-Bangla Agricultural University farm to study the effect of irrigation frequencies and polythene mulching on the growth and yield of white maize (PSC-121) during winter 2015-16. Four irrigation frequencies constituted the irrigation treatment (I_1 = One irrigation at 15 DAS, I_2 =

Two irrigations at 15 and 30 DAS, I_3 = Three irrigations at 15, 30 and 60 DAS, I_4 = Four irrigations at 15, 30, 60 and 90 DAS) along with control. Straw yield of maize showed statistically significant variation due to different levels of irrigations. The highest straw yield of 15.13 t ha⁻¹ was recorded from I₄ treatment which was statistically similar with I₃ treatment. On the other hand, the lowest straw yield 8.583 t ha⁻¹ was observed from I₀ treatment.

Elzubeir and Mohamed (2011) reported that 10 days irrigation interval gave the highest values of stover yield ($4.8 \& 4.6 \text{ t} \text{ ha}^{-1}$) compared to others irrigation intervals in both year.

2.1.10 Harvest index

Shen *et al.* 2020 conducted a field experiments to known the effect of optimal irrigation interval on the photosynthetic rate (Pn) and dry matter accumulation (DM) of closely planted super-high-yield maize under drip irrigation under mulch and founded that the maximum harvest index was (53 & 53 %) was observed in D6 treatment compared to others treatment in both years.

Ullah *et al.* 2019 carried out an experiment at Sher-e-Bangla Agricultural University farm to study the effect of irrigation frequencies and polythene mulching on the growth and yield of white maize (PSC-121) during winter 2015-16 and founded that the highest harvest index (40.98%) was observed from I₄ (Four irrigations at 15, 30, 60 and 90 DAS) treatment which was statistically similar with I₃ and I₂ treatments and the lowest 36.93% was from I₀ treatment which was statistically similar with I₁ treatment.

Elzubeir and Mohamed (2011) reported that 10 days irrigation interval gave the highest values of harvest index (30 & 50 %) compared to others irrigation intervals in both year.

2.2 Effect of different spacing

2.2.1 Plant height

Ahmmed *et al.* (2020) conducted an experiment during December, 2017 to May, 2018 at the Agronomy field of Sher-e-Bangla Agricultural University, Dhaka to evaluate the performance of white maize variety under different spacing and integrated fertilizer management and showed that the highest plant height at 45, 90 DAS and at harvest were 37.25, 177.94 and 197.91 cm respectively with S_1 (60 cm × 20 cm) where the lowest were 35.889, 172.81 and 186.70 cm respectively with S_2 (40 cm × 20 cm).

Alam *et al.* (2020) revealed that the maximum morpho-physiological characters, yield attributes and yield was obtained with higher composition of nutrients by using technique of 60 cm×30 cm (T_3). This treatment also showed the highest plant height that was 223.45 cm.

Gaire *et al.* (2020) reported that different spacing and nitrogen level significantly affect the plant height and leaf area index. The plant height and leaf area index were significantly high at close spacing (60×15 cm) and at 120 kg N/ha.

Akbar *et al.* (2016) conducted an on farm experiments in the Bandarban valley during dry season, October 2015 through March, 2016 to investigate the possibility of introducing white maize as human food. Yield response of two maize hybrids (PSC121 andKS510) planted in three different row arrangements (row to row distance 50 and 60 cm with plant to plant distance of 25 cm along with a twin row arrangement) was evaluated in one experiment. Twin row had the maximum plant height (288 cm) whereas the 60 x25 cm spacing had the shortest plants (242 cm).

Enujeke (2013 a) reported that the tallest plant 176.7 cm was recorded from plants sown in 75 cm \times 15 cm and the shortest one 152.7 cm was recorded from plants sown in 75 cm \times 35 cm spacing.

2.2.2 No. of leaves

Ahmmed *et al.* (2020) conducted an experiment to evaluate the performance of white maize variety under different spacing and integrated fertilizer management and reported that higher leaves number plant⁻¹ was achieved with higher plant spacing where lower plant spacing showed lower leaf number plant⁻¹. The highest leaves number plant⁻¹at 8.00, 10.04 and 11.93 respectively at S₁ where the lowest were 7.81,

9.19 and 11.57 respectively which was with S_2 .

Jula *et al.* (2013) carried out a field experiment to evaluate the effects of various intrarow spacing on the growth and yield of maize intercropped into ginger. The results showed that, the highest number of leaves plant⁻¹ (12.33) was recorded from maize intercrop planted at 75 cm \times 75 cm and the lowest number of leaves plant⁻¹ (8.00) was reported from sole maize crop treatment at 75 cm \times 25 cm spacing.

2.2.3 Leaf area

Ukonze *et al.* (2016) carried out a study to compare and analyses how spacing influenced the performance and yield of late maize and reported that 70 cm \times 30 cm and 60 cm \times 40 cm spacing gave higher values of the morphological parameters (leaf area plant⁻¹) than 80 cm \times 20 cm.

Enujeke (2013 a) showed that plants sown on 75 cm \times 35 cm spacing had the maximum leaf area (713.70 cm²) whereas plants sown on 75 cm \times 15 cm spacing had the minimum leaf area (587.30 cm²).

2.2.4 Dry matter weight

Getaneh *et al.* (2016) reported that the highest above ground dry biomass yields per plant was occurred at the widest inter and intra-row spacing might be due to high stem diameter and high leaf area because there is more availability of growth factors and better penetration of light at wider row spacing.

Jula *et al.* (2013) conducted a field experiment to evaluate the effects of various intrarow spacing on the growth and yield of maize intercropped into ginger. The results showed that the dry matter accumulation was the highest (29.17 g plant⁻¹) for maize intercrop planted at 75 cm \times 25 cm, which was significantly better than all other treatments with the least dry matter accumulation (10 g plant⁻¹) obtained in the sole maize crop.

2.2.5 Cob length

Ahmmed *et al.* (2020) reported that the longest cob (15.99 cm) was attained with S_1 (60 cm × 20 cm) where the shortest (14.62 cm) was with S_2 (40 cm × 20 cm).

Alam *et al.* (2020) reported that the maximum morpho-physiological characters, yield attributes and yield was obtained with higher composition of nutrients by using technique of $60 \text{cm} \times 30 \text{cm}$ (T₃). This treatment also showed the highest cob length that was 22.20 cm.

Koirala *et al.* (2020) founded that the highest grain yield was found in Rampur Composite and Arun-2 while they were planted with row spacing of 60 cm with plant to plant spacing of 25 cm. The highest cob length was reported when maize was planted in the row spacing 60×25 cm.

Azam (2017) conducted a field study to investigate the effect of various intra-row plant spacings on the yield of different maize hybrids and showed that intra-row spacing had statistically significant effect on yield and yield components of Maize. Greater cob length (19.86 cm), was recorded where 12 inches plant spacing.

Akbar *et al.* (2016) reported that twin row had the maximum cob length (1998 cm) whereas the 60x25 cm spacing had the shortest plants (242 cm).

2.2.6 Cob circumference

Ahmmed *et al.* (2020) founded significantly different results in respect of the highest and the lowest value of cob circumference. Maximum cob circumference observed in S_1 (60 cm × 20 cm) treatment combination.

Koirala *et al.* (2020) carried out an field experiment to study the Effect of row to row spacingss on different maize varieties and founded the highest cob Circumference was reported when maize was planted in the row spacing 60×25cm.

Hasan *et al.* (2018) reported that variety and plant spacing had significant effect on the studied crop characters and yield. Maximum diameter of cob was observed in the spacing of 75 cm \times 25 cm.

2.2.7 No. of grain rows cob⁻¹

Koirala *et al.* (2020) reported that the highest number of rows per cob was reported when maize was planted in the row spacing 60×25 cm.

Azam (2017) showed that intra-row spacing had statistically significant effect on yield and yield components of Maize. Highest number of rows per cob (14.31), cm), was recorded where 12 inches plant spacing was kept.

Rahman *et al.* (2016) revealed that nitrogen levels and plant spacing had significant effect on yield attributes and yield of Khaibhutta. The highest number of, grain rows per cob was recorded at 75 cm \times 25 cm spacing.

2.2.8 No. of grains row⁻¹

Eyasu *et al.* (2018) conducted a field study with the objective of evaluating different varieties and row spacing on growth, yield and yield components of maize. Four plant row spacing (45 cm, 55 cm, 65 cm and 75 cm) and three maize varieties ("BH-540", Lemu "P3812W" and Jabi "PHB 3253") were tested. The results indicated that number of kernels per rows was significantly influenced by the interaction effect of row spacing and varieties.

Rahman *et al.* (2016) found that nitrogen levels and plant spacing had significant effect on yield attributes and yield of Khai bhutta. The highest number of, grain per row was recorded at 75 cm \times 25 cm spacing.

Akbar *et al* (2016) conducted an on farm experiments in the Bandarban valley during dry season, October 2015 through March, 2016 to investigate the possibility of introducing white maize as human food. Yield response of two maize hybrids (PSC121 and KS510) planted in three different row arrangements (row to row distance 50 and 60 cm with plant to plant distance of 25 cm along with a twin row arrangement) was evaluated in one experiment. The row 50 x25 had the maximum number of grain row on a cob (over 14) whereas the other spacings had the least numbers (below 14).

2.2.9 No. of grains cob⁻¹

Ahmmed *et al.* (2020) reported that the highest grains cob^{-1} (372.19) was attained with S₁ (60 cm × 20 cm) where the lowest (340.72) was with S₂ (40 cm × 20 cm). Higher spacing gave the highest number of grains cob^{-1} .

Alam *et al.* (2020) conducted an experiment to examine the effect of suitable spacing technique(s) of maize on the morpho-physiology, yield attributes, yield and nutrient composition of maize and reported that the maximum morpho-physiological characters, yield attributes and yield was obtained with higher composition of nutrients by using technique of 60 cm \times 30 cm (T₃). This treatment also showed the highest number of grain cob⁻¹ was 710.13.

Azam (2017) showed that intra-row spacing had statistically significant effect on yield and yield components of Maize. Highest number of grains per cob (501) was recorded where 12 inches plant spacing was kept.

Salam *et al.* (2010) carried out an trial at the central farm of Sher-e-Bangla Agricultural University, Dhaka during the period from April to July 2006 to study the effect of different levels of nitrogen and spacing on growth and yield of hybrid maize. Three levels of Nitrogen (180, 220 and 260 kg N ha⁻¹) and plant spacing (60cm × 25cm, 75cm × 25cm and 90cm × 25cm) were the treatment variables in the experiment. Results showed that significantly higher number of grains cob⁻¹ (300.33) was found in 75cm × 25cm spacing.

Akbar *et al.* (2016) conducted an on farm experiments in the Bandarban valley during dry season, October 2015 through March, 2016 to investigate the possibility of introducing white maize as human food. Yield response of two maize hybrids (PSC121 andKS510) planted in three different row arrangements (row to row distance 50 and 60 cm with plant to plant distance of 25 cm along with a twin row arrangement) was evaluated in one experiment. Twin row had the maximum number of grains per cob (516) whereas the 60x25 cm spacing had the least (468).

A study was carried out by Ullah *et al.* (2016) at Sher-e-Bangla Agricultural University farm to evaluate the performance of seedling transplantation of four white maize hybrids (Changnuo-1, Q-Xiannuo-1, Changnuo-6 and Yangnuo-7)

under two planting geometries (D_1 =Row to row spacing 75 cm and plant to plant spacing within each row 25 and D_2 = Row to row spacing 60 cm and plant to plant spacing within each row 25). D_1 had 55 whereas D_2 had 66.666 thousands plants per hectare. Results showed that varieties differed significantly in days to maturity showing the earliest (108 days) with the Yangnuo-7. Other varieties matured in between 135-137 days. Planting configuration D_2 had significantly greater number of grains per cob (370) whereas the D1 had the least (337).

2.2.10 1000 grains weight

Koirala *et al.* (2020) reported that highest average thousand grain weight was reported when maize was planted in the row spacing 60×25 cm.

Hasan *et al.* (2018) founded that variety and plant spacing had significant effect on the studied crop characters and yield. The highest 1000-grain weight was observed in the spacing of 75 cm \times 25 cm.

Azam (2017) reported that intra-row spacing had statistically significant effect on yield and yield components of Maize. 1000-grain weight (339 g) was recorded where 12 inches plant spacing was kept.

Akbar *et al* (2016) conducted an on farm experiments in the Bandarban valley during dry season, October 2015 through March, 2016 to investigate the possibility of introducing white maize as human food. Yield response of two maize hybrids (PSC121 andKS510) planted in three different row arrangements (row to row distance 50 and 60 cm with plant to plant distance of 25 cm along with a twin row arrangement) was evaluated in one experiment. Twin row had the maximum 100 seed weight (above 34 g) whereas the others had the 100 seed weight around or below 34 g.

A study was carried out by Ullah *et al.* (2016) at Sher-e-Bangla Agricultural University farm to evaluate the performance of seedling transplantation of four white maize hybrids (Changnuo-1, Q-Xiannuo-1, Changnuo-6 and Yangnuo-7) under two planting geometries (D_1 =Row to row spacing 75 cm and plant to plant spacing within each row 25 and D_2 = Row to row spacing 60 cm and plant to plant spacing within each row 25). D_1 had 55 whereas D_2 had 66.666 thousands plants per hectare. Results showed that varieties differed significantly in days to maturity showing the earliest (108 days) with the Yangnuo-7. Other varieties matured in between 135-137 days. Planting configuration D_2 had significantly greater 100 seed weight (31.42 g) and the D1 had lower values (30.40 g).

Salam *et al.* (2010) carried out an trial at the central farm of Sher-e-Bangla Agricultural University, Dhaka during the period from April to July 2006 to study the effect of different levels of nitrogen and spacing on growth and yield of hybrid maize. Three levels of Nitrogen (180, 220 and 260 kg N ha⁻¹) and plant spacing (60cm × 25cm, 75cm × 25cm and 90cm × 25cm) were the treatment variables in the experiment. Results showed that significantly higher 1000- grain weight (446.13g) was found in 75cm × 25cm spacing.

2.2.11 Grain weight

Alam *et al.* (2020) reported that the maximum morpho-physiological characters, yield attributes and yield was obtained with higher composition of nutrients by using technique of 60 cm×30 cm (T_3). This treatment also showed the height grain weight cob⁻¹ was 230.67g.

Akbar *et al.* (2016) conducted an on farm experiments in the Bandarban valley during dry season, October 2015 through March, 2016 to investigate the possibility of introducing white maize as human food. Yield response of two maize hybrids (PSC121 andKS510) planted in three different row arrangements (row to row distance 50 and 60 cm with plant to plant distance of 25 cm along with a twin row arrangement) was evaluated in one experiment. The effect of row spacing was found to be inconsistent in terms of grain weight per plant showing a range of 195-209 g.

A study was carried out by Ullah *et al.* (2016) at Sher-e-Bangla Agricultural University farm to evaluate the performance of seedling transplantation of four white maize hybrids (Changnuo-1, Q-Xiannuo-1, Changnuo-6 and Yangnuo-7) under two planting geometries (D_1 =Row to row spacing 75 cm and plant to plant spacing within each row 25 and D_2 = Row to row spacing 60 cm and plant to plant spacing within each row 25). D_1 had 55 whereas D_2 had 66.666 thousands plants per hectare. Results showed that varieties differed significantly in days to maturity showing the earliest (108 days) with the Yangnuo-7. Other varieties matured in between 135-137 days. Planting configuration D_2 had significantly greater yield (7.551 t/ha), whereas the D1 produced (5.832 t/ha)

Salam *et al.* (2010) carried out an trial at the central farm of Sher-e-Bangla Agricultural University, Dhaka during the period from April to July 2006 to study the effect of different levels of nitrogen and spacing on growth and yield of hybrid maize. Three levels of Nitrogen (180, 220 and 260 kg N ha⁻¹) and plant spacing (60cm × 25cm, 75cm × 25cm and 90cm × 25cm) were the treatment variables in the experiment. Results showed that significantly higher grain yield (7.354 t ha⁻¹) was found in 75cm × 25cm spacing.

2.2.12 Cob weight

Ukonze *et al.* (2016) reported that the 70 x 30 and 60 x 40 cm spacing gave higher values of the morphological parameters than 80 x 20 cm. With regard to yield, 80 x 20 cm gave the highest average cob weight of 0.74 kg and 1000-grain weight (yield) of 0.27t/ha.

Nand (2015) reported that the spacing of $60 \text{ cm} \times 20 \text{ cm}$ significantly increased the cob weight (205.90 and 205.90 g) than the spacing of $60 \text{ cm} \times 25 \text{ cm}$ and $45 \text{ cm} \times 20 \text{ cm}$, respectively.

2.2.13 Shelling percentage (%)

Ahmmed *et al.* (2020) revealed that both the individual and the interaction treatments had effect on different growth and yield parameters of white maize. In respect of the spacing effect, the wider spacing S_1 showed highest plant shelling percentage compared to other treatments.

Mukhtar *et al.* (2012) founded that plant spacing had significant effect on shelling percentage while hybrids and hybrid x spacing interaction showed non-significant effect. In case of plant spacings, maximum shelling percentage 86.63% was observed in maximum plant spacing that was 17.50 cm which was statistically at par with 15.00 and 12.50 cm spacings.

2.2.14 Grain yield

Ahmmed *et al.* (2020) reported that the highest grain yield (8.62 t ha⁻¹) was obtained with S₂ (40 cm × 20 cm) where the lowest (7.30 t ha⁻¹) was with S₁ (60 cm × 20 cm).

Belay (2019) conducted a field experiment under rainfed conditions in 2015 and 2016 during the main cropping season at Haramaya to determine the effects of inter and intra row spacing on growth, yield components, and yield of hybrid maize varieties. Result reviled that grain yield was significantly (p < 0.01) affected by the interactions of variety × inter-row spacing and inter-row × intra row spacing × year. Accordingly, the highest grain yield 11.67 t ha⁻¹ was obtained in combination of 75 cm × 25 cm in 2016 cropping season, while the lowest grain yield 8.66 tha⁻¹ was obtained at wider inter and widest intra row spacing combination (75 cm × 35 cm) in 2015 cropping season.

Eyasu *et al.* (2018) conducted a field study with the objective of evaluating different varieties and row spacing on growth, yield and yield components of maize. Four plant row spacing (45 cm, 55 cm, 65 cm and 75 cm) and three maize varieties ("BH-540", Lemu "P3812W" and Jabi "PHB 3253") were tested. The results indicated that grain yield per hectare was significantly influenced by the interaction effect of row spacing and varieties. Significantly the highest grain yield were produced by maize variety Lemu grown at row spacing of 65 cm, which was statistically similar with variety BH-540 grown at row spacing of 65 and 75 cm and also the same variety grown at row spacing of 65 and 75 cm and also the same variety grown at row spacing of 45 cm. Based on these results, it can be concluded that under irrigated condition Lemu and BH-540 maize varieties at 65–75 cm row spacing resulted higher biomass and grain yield of maize.

Golla *et al.* (2018) conducted a field experiment to determine the optimum rateof nitrogen fertilization and intra row spacing. Three intra-row spacing *viz.*, 75cm × 40 cm, 75 cm × 30 cm and 75 cm × 20 cm accommodating 33333, 44444and 66666 plants ha⁻¹ respectively, with six nitrogen fertilizer levels *viz.* 0, 23,46, 69, 92 and 115 kg ha⁻¹ were assigned to the experimental plot by factorial combinations. Based on the results, the maximum grain yield (10,207.8 kg ha⁻¹)was obtained when the hybrid was sown at the closest intra row spacing (20 cm) with application of the highest rate of nitrogen (115 kg ha⁻¹).

Hasan *et al.* (2018) conducted an experiment to investigate the effect of variety and plant spacing on yield attributes and yield of maize and reported that variety and plant spacing had significant effect on the studied crop charactersand yield. The maximum grain yield was observed in the spacing of 75 cm \times 25cm. The lowest grain yield was recorded from the plant spacing of 75 cm \times 35 cm with Khoi bhutta.

Akbar *et al.* (2016) reported that planting in twin-rows giving 80,000 plants per ha and produced 17.7 % higher yield compared with planting in single rows 60 cm apart giving 66,667 plants ha⁻¹.Planting in twin-rows produced higher yield significantly compared with single rows. Increase in maize grain yield was associated with the number of grains per ear and individual grain weight.

2.2.15 Stover yield

Ahmmed *et al.* (2020) reported that different spacing had significant effect on stover yield of maize Results revealed that highest stover yield 9.92 t ha⁻¹ was attained with S_2 where the lowest 7.28 t ha⁻¹ was with S_1 .

Worku and Derebe (2020) conducted a field experiments to determine the optimum N level and PD (plant density), field experiments were conducted in the 2014 and 2015 rainy seasons. A factorial arrangement of three N levels (120, 240 and 360 kg ha⁻¹) and four PD (53,333, 61,538, 83,333 and 90,900 plants ha⁻¹ with a corresponding plant spacing of 75×25 , 60×25 , 60×20 and 55×20 cm, respectively) were compared using randomized complete block design with three replications. Result reviled that stover and grain yields were significantly increased with increasing PD from 53,333 to 90,900 plants ha⁻¹.

Hasan *et al.* (2018) conducted an experiment to investigate the effect of variety and plant spacing on yield attributes and yield of maize. The experiment comprised 5 varieties *viz.*, Khoi bhutta, BARI hybrid maize 7, BARI hybrid maize 9, C-1921, P-3396 and five plants spacing *viz.*, 75 cm \times 20 cm, 75 cm \times 25 cm, 75 cm \times 30 cm, 75 cm \times 35 cm and 75 cm \times 40 cm. The maximum stover yield was observed in the spacing of 75 cm \times 25 cm. In contrast, the spacing of 75 cm \times 30 cm produced the lowest stover yield.

2.2.16 Biological yield

Ahmmed *et al.* (2020) reported that the highest biological yield (18.54 t ha⁻¹) was obtained with S₂ (40cm × 20 cm) where the lowest (14.59 t ha⁻¹) was with S₁ (60 cm × 20 cm).

Gaire *et al.* (2020) reported that the variation in biological yield due to each increment in nitrogen level and spacing was significant (p<0.01). The highest biological yield (12.37 mt/ha) produced under 60×15 cm spacing and the lowest biological yield (9.24 mt/ha) produced under 60×25 cm spacing.

Hossain (2015) reported that interaction of variety PSC- 121 with double rows of 50 cm \times 25 cm plant spacing gave the highest biological yield (24.51 t ha⁻¹). On the other hand, interaction of variety PSC-121 with plant spacing of 40 cm \times 25 cm showed the lowest results.

2.2.17 Harvest index (%)

Ahmmed *et al.* (2020) reported that the numerically highest harvest index (49.82 %) was attained with S_1 (60 cm × 20 cm) where the lowest (46.51 %) was with S_2 (40 cm × 20 cm).

Mechi (2015) conducted a field experiment to assess the response of maize hybrid variety "BH-661" to nitrogen (N) fertilizer and inter row spacing. The experiment was arranged in a factorial combination of four levels of nitrogen (0, 60, 120 and 180 kg N ha⁻¹) and four inter row spacing (55, 65, 75 and 85 cm). Results indicated that, the highest harvest index (53.16 %) was recorded from inter row spacing of 85 cm and the lowest harvest index (42.91 %) was obtained from inter row spacing of 55 cm.

CHAPTER III

MATERIALS AND METHODS

This part presents a concise depiction about the duration of the experimental period, site description, climatic state of the area, harvest or planting materials that are being utilized in the test, treatments, design, crop growing procedure, intercultural activities, data collection and statistical analyses.

3.1 Experimental period

The experiment was conducted during the period from October- 2019 to February- 2020 in Rabi season.

3.2 Site description

3.2.1 Geographical location

The experiment was directed at the Agronomy field of Sher-e-Bangla Agricultural University (SAU), Sher-e-Bangla Nagar Agargong Dhaka, Bangladesh. The experimental site is topographically situated at 23°77′ N scope and 90°33′ E longitude at an elevation of 8.6 meter above ocean level (Anon., 2004).

3.2.2 Agro-Ecological Zone

The experimental field belongs to the Agro-ecological zone (AEZ) of "The Modhupur Tract", AEZ-28 (Anon., 1988 a). This was a region of complex relief and soils developed over the Modhupur clay, where floodplain sediments buried the dissected edges of the Modhupur Tract leaving small hillocks of red soils as "islands" surrounded by floodplain (Anon., 1988 b). For better understanding about the experimental site has been shown in the Map of AEZ of Bangladesh in Appendix-I. (Banglapedia, 2014)

3.3 Climate

The climate of the experimental site was subtropical, characterized by the winter season from November to February and the pre-monsoon period or hot season from March to April and the monsoon period from May to October (Edris *et al.*, 1979). Meteorological data related to the temperature, relative humidity and rainfall during the experiment period of was collected from Bangladesh Meteorological Department (Climate division), Sher-e-Bangla Nagar, Dhaka and has been presented in Appendix- II.

3.4 Soil

The soil of the experimental pots belongs to the General soil type, Shallow Red Brown Terrace Soils under Tejgaon soil series. Soil pH ranges from 5.4–5.6 (Anon., 1989). The land was above flood level and sufficient sunshine was available during the experimental period. The morphological, physical and chemical characteristics of the experimental soil have been presented in Appendix-III. (Banglapedia, 2014 and Biswas *et al.*, 2019).

3.5 Planting materials

In this research work, "SAUWM 12-3-3" genotype variety of white maize seed was used as planting materials, which was collected from Department of Agronomy, Shere-Bangla Agricultural University, Dhaka-1207, Bangladesh.

3.6 Description of the variety

"SAU Shada Bhutta-3" genotype of white maize used as planting material for the present study. These variety was recommended for Rabi and kharif season. The feature of this variety was presented below:

Name of Variety : SAU Shada Bhutta-3			
Identifying character : Bold grain quality and drought tolerant	Suitable area : All over Bangladesh		
Type : Medium duration, Open pollinated	Number of cobs plant- ¹ : Mainly one		
Height : 180–200 cm	Cob colour : White colour.		
Crop duration : 110–120 days	Grain colour : White		
Leaf colour at Maturity : Light Green color at maturity	Yield : 9-9.50 t ha ⁻¹		

Source : Personal Communication: Prof. Dr. Md. Jafar Ullah, Dept. Of Agronomy, SAU, Dhaka.

3.7 Major diseases and management

Diseases: At vegetative stage of white maize leaf blight disease occurs. **Management:** Clean cultivation with timely sowing and maintain balance fertilizer application. Seed treatment with vitavax-200 @ 2.50 g kg⁻¹ seed, spraying with Tilt or Folicure @ 0.5% and burning of crop residues.

Major insect/pest and management

Insect pests: Cut worm and stem borer attack at vegetative stage of maize. Earworm attack in cob at reproductive stage in maize.

Management

For cutworm: The larvae were killed after collecting from soil near the cut plants in morning. Dursban or Pyrifos 20 EC 5 ml liter⁻¹ water sprayed especially at the base of plants to control cutworms.

For ear worm: The larvae are killed after collecting from the infested cobs. Cypermethrin (Ripcord 10 EC/Cymbush 10 EC) @ 2 ml litre⁻¹ water sprayed to control this pest.

For stem borer: Marshall 20 EC or Diazinon 60 EC @ 2 ml litre⁻¹ water sprayed properly to control the pest. Furadan 5 G or Carbofuran 5 G @ 20kg ha⁻¹ applied on top of the plants in such a way so that the granules stay between the stem and leaf base. Such type of application of insecticides is known as whorl application.

3.8 Experimental details

Land preparation Date: 19 October 2019
Seed Sowing Date: 20 October 2019
Spacing: According to the treatment requirement
Fertilizer apply Date: All the fertilizers were applied at 19 October 2019 during final land preparation except total urea
Flowering date: 24 December 2019
Silking Date: 2 January
Harvesting Date: 22 February 2020

3.9 Experimental treatment details and combinations

3.9.1 Experimental treatment

There were two sets of treatments in the experiment. The treatments were irrigation frequencies and spacing. Those are shown below:

Factor A: Irrigation frequencies	Factor B: Different spacings
(Three levels)	(Four levels)
I1: Irrigation at 30 days interval	$\mathbf{S_1}: 40 \text{ cm} \times 20 \text{ cm}$
I2: Irrigation at 35 days interval	S ₂ : 40 cm× 25 cm
I ₃ : Irrigation at 40 days interval	S ₃ : 50 cm× 20 cm
	S ₄ : 50 cm× 25 cm

3.9.2 Treatment combinations

This two factor experiments were included 12 treatment combinations.

I1S1, I1S2, I1S3, I1S4, I2S1, I2S2, I2S3, I2S4, I3S1, I3S2, I3S3, I3S4

3.9.3 Experimental design

The experiment was laid out in the Split plot design with three replications. The field was divided into 3 blocks to represent 3 replications. Total 36 unit plots were made for the experiment with 12 treatments. The size of each unit plot was 3.89 m^2 (3.17 m \times 1.23 m). Distance maintained between replication and plots were 1.0 m and 0.50 m, respectively. Layout of the experimental field was presented in Appendix IV.

3.10 Detail of experimental preparation

3.10.1 Preparation of experimental land

The land was opened with the help of a tractor drawn disc harrow on (19 October 2019) and then ploughed with rotary plough twice followed by laddering to achieve a medium tilth required for the crop under consideration. All weeds and other plant residues of previous crop were removed from the field. Immediately after final land preparation, the field layout was made on (19 October 2019) according to experimental specification. Individual plots were cleaned and finally the plot were prepared.

3.10.2 Fertilizer application

Cow dung 5 t ha⁻¹ was used before final land preparation. The field was fertilized with nitrogen, phosphate, potash, sulphur, zinc and boron at the rate of 500-250-200-250-15-5 kg ha⁻¹ of urea, triple super phosphate, muriate of potash, gypsum, zinc sulphate and boric acid, respectively (BARI, 2014). The whole amounts of fertilizers were applied as basal doses except Urea. Only one third Urea was applied as basal doses and the rest amount was applied at 15 DAS interval for three installments.

3.10.3 Seed sowing and maintaining spacing

The shada bhutta seeds were sown in lines maintaining sapcing as per treatments having 2 seeds hole⁻¹ under direct sowing in the well prepared plot on 20 October 2019.

3.11 Intercultural operations

After raising seedlings, various intercultural operations such as irrigation, weeding, gap filling and thinning, drainage, pest and disease control etc. were accomplished for better growth and development of the maize seedlings.

3.11.1 Gap filling and thinning

Gap filling was done on 30 October 2019 which was 10 days after sowing (DAS). Thinning was done on 4 November 2019 which was 15 days after sowing.

3.11.2 Weeding

The hand weeding was done as when necessary to keep the plot free from weeds. During plant growth period two weeding were done. The weeding was done on 14 November 2019 and 4 December 2018, which was 25 and 45 days after sowing, respectively.

3.11.3 Earthing up

Earthing up was done on (date and year) which was 30 days after sowing. It was done to protect the plant from lodging and for better irrigation management and nutrition uptake.

3.11.4 Application of irrigation water

Irrigation water was given as per treatments requirement.

3.11.5 Pest and disease control

As described in section 3.7.

3.11.6 General observations of the experimental site

Regular observations were made to see the growth stages of the crop. In general, the plot looked nice with normal green plants, which were vigorous and luxuriant.

3.11.7 Harvesting, threshing and cleaning

The mature cobs were harvested when the husk cover was completely dried and black coloration was found in the grain base (black band). The cobs of five randomly selected plants of each plot were separately harvested for recording yield attributes and other data. Harvesting was done on 22 February 2020.

3.11.8 Drying

The harvested products were taken on the threshing floor and it was dried for about 4–5 days.

3.12 Crop sampling

During 30,60,90 days and harvesting period 5 plants was cutting from the soil base which was selected for crop sampling for taking various parameters data of the plant.

3.13 Data collection

The data were recorded on the following parameters

A. Crop growth characters

- i. Plant height (cm)
- ^{ii.} Number of leaves plant⁻¹
- iii. Leaf area plant⁻¹ (cm^2)
- iv. Total dry matter $plant^{-1}(g)$

B. Yield contributing characters

- v. Cob length plant⁻¹ (cm)
- vi. Cob circumference plant⁻¹ (cm)
- vii. Number of rows cob⁻¹ (no.)
- viii. Number of grains row⁻¹(no)
- ix. Number of grains $cob^{-1}(no)$

- x. 1000 grains weight $cob^{-1}(g)$
- xi. Chaff weight $plant^{-1}(g)$
- xii. Shell weight $plant^{-1}(g)$
- xiii. Grain weight $cob^{-1}(g)$
- xiv. Cob weight $plant^{-1}(g)$
- xv. Shelling Percentage (%)

C. Yield characters

- xvi. Grain yield (t ha⁻¹)
- xvii. Stover yield (t ha⁻¹)
- xviii. Biological (t ha⁻¹)
- xix. Harvest index (%)

3.14 Procedure of recording data

A brief outline on data recording procedure followed during the study is given below

3.14.1 Plant height (cm) at different DAS (30, 60, 90 DAS and harvest respectively)

At different stages of crop growth (30, 60, 90 DAS and at harvest), the height of five randomly selected plants from the inner rows plot⁻¹ was measured from ground level to the tip of the plant portion and the mean value of plant height was recorded in cm.

3.14.2 Number of leaves plant⁻¹ (No.)

At different stages of crop growth ((30, 60, 90 DAS and at harvest) the number of leaves of five randomly selected plants from the inner rows per plot was measured by counting the number of leaves of the plant and the mean value of the number of leaves was recorded.

3.14.3 Leaf area plant⁻¹ (cm²) at different DAS (30, 60, 90 DAS and at harvest) (cm²)

Leaf area was estimated manually by counting the total number of leaves plant⁻¹ and measuring the length and average width of leaf and multiplying by a factor of 0.70 (Keulen and Wolf, 1986). It was done at 30, 60, 90 days after sowing and harvest respectively.

Leaf area plant⁻¹ =

 $\frac{\text{Surface area of leaf sample } \text{cm}^2 \times \text{No. of leaves plant}^{-1} \times \text{Correction factor}}{\text{No. of leaves sampled}}$

3.14.4 Dry matter weight plant ⁻¹ at different DAS (30, 60, 90 DAS and at harvest respectively)

At 30, 60, 90 DAS and harvest respectively 5 plants from each plot were uprooted randomly. Then the plant was cut into pieces. Then the various pieces of the plant were put into a paper packet ,in case of harvesting, cob was also put into a packet and placed in oven maintaining 70° C for 72 hours. Then the sample was transferred into desiccators and allowed to cool down at room temperature. Then the sample weight was taken and then calculate the total dry matter of a plant for each plot. It was performed at 30,60, 90 DAS and harvest respectively.

3.14.5 Cob length plant⁻¹ (cm)

Cob length was measured in centimeter. Cob length was measured from the base to the tip of the cob of the five selected plants in each plot with the help of a centimeter scale then average data were recorded.

3.14.6 Cob circumference plant⁻¹ (cm)

Five cobs were randomly selected per plot and the circumference was taken from each cob. Then average result was recorded in cm.

3.14.7 Number of grain rows cob⁻¹

Five cobs from each plot were selected randomly and the number of grain rows per cob was counted. Then the average result was recorded.

3.14. 8 Number of grains row⁻¹ in cob

Five cobs from each plot were selected randomly and the number of grains per row was counted and then the average result was recorded.

3.14. 9 Number of grains cob⁻¹

The numbers of grains per cob was measured from the base to tip of the ear collected from five randomly selected cobs of each plot and finally average result was recorded.

3.14. 10 Weight of 1000 grains

After removing the grain from each cob from each plot grains are stored in a specific grain stock or pot. From the seed stock of each plot 1000 seeds were calculated and the weight was measured by an electrical balance. It was recorded in gram.

3.14.11 Chaff weight plant-¹ (g)

Whole chaff without grains of five cobs were randomly taken from each plot and the weight was taken in an electrical balance. The average chaff weight was recorded in gram.

3.14.12 Shell weight plant-¹ (g)

After removing the grain from cobs shell of five cobs were randomly taken from each plot and the weight was taken in an electrical balance. The average shell weight was recorded in gram.

3.14.13 Grain weight cob-¹ (g)

Whole grains of five cobs were randomly taken from each plot and the weight was taken in an electrical balance. The average grain weight was recorded in gram.

3.14. 14 Cob weight plant-¹ (g)

Cob weight (Includes chaff, shell and total grain weight of a cob) of five randomly selected cobs from the five selected plants in each plot was taken in an electrical balance and the average weight was recorded in gram.

3.14. 15 Shelling percentage

Five cobs were randomly selected from each plot and shelling percentage was calculated by using the following formula

Shelling percentage = $\frac{\text{Grain weight of each cob}}{\text{Cob weight of each cob}} \times 100$

3.14. 16 Grain yield (t ha⁻¹)

After removing the grain from the cob grain yield was calculated. Grain yield was calculated from cleaned and well dried grains collected from $1m^2$ area of each plot and expressed as t ha⁻¹. Finally grain yield was adjusted at 14% moisture. The grain yield t ha⁻¹ was measured by the following formula:

Grain yield (t ha⁻¹) =
$$\frac{\text{Grain yield per plot (kg)} \times 10000}{\text{Area of plot in square meter} \times 1000}$$

3.14. 17 Stover yield (t ha⁻¹)

After removing the grains from the cob various parts of the plants without grain part was weighted and well dried stover were collected from each plot were taken and converted into hectare and were expressed in t ha⁻¹The straw yield t ha⁻¹ was measured by the following formula:

Stover yield (t ha⁻¹) = $\frac{\text{Stover yield per plot (kg)} \times 10000}{\text{Area of plot in square meter} \times 1000}$

3.14. 18 Biological yield (t ha⁻¹)

Grain yield alone with stover yield was regarded as biological yield and calculated with the following formula:

Biological yield (t ha^{-1}) = grain weight (t ha^{-1}) + stover yield (t ha^{-1})

3.14. 19 Harvest Index (%)

Harvest Index indicate the ratio of economic yield (grain yield) to biological yield and was calculated with the following formula:

Harvest Index (%) = $\frac{\text{Economic yield (Grain weight)}}{\text{Biological yield (Biological weight)}} \times 100$

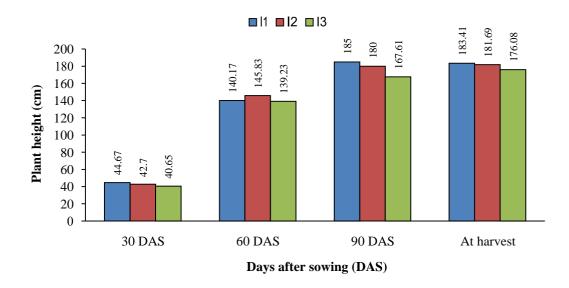
3.15 Statistical data analysis

The collected data were compiled and analyzed statistically using the analysis of variance (ANOVA) technique with the help of a computer package program Statistix 10 software .The significant differences among the treatment means were compared by Least Significant Difference (LSD) at 5% levels of probability (Gomez and Gomez, 1984).

CHAPTER IV

RESULTS AND DISCUSSION

The data on different growth, yield contributing characters and yield were recorded to find out the compatible irrigation frequency and spacing on white maize. The results have been presented and discussed and possible explanation have been given under the following headings:


4.1 Plant growth parameters

4.1.1 Plant height (cm)

4.1.1.1 Effect of irrigation frequency

Plant height is an important morphological character that acts as a potential indicator of availability of growth resources in its approach. From this experiment, result revealed that different irrigation frequencies showed significant effect on plant height of shada bhutta at different days after sowing (Figure 1 and Appendix V). The maximum plant height (44.67 cm) at 30 DAS was observed in I₁ treatment. At 60 DAS the maximum plant height (145.83 cm) was observed in I₂ treatment. At 90 DAS and at harvest respectively the maximum plant height (185.0 and 183.41 cm) was observed in I₁ treatment which was statistically similar with I₂ (180.00 and

181.69 cm) treatment at 90 DAS and at harvest respectively. Whereas the minimum plant height (40.65, 139.23, 167.61 and 176.08 cm at 30, 60, 90 DAS and at harvest respectively) was observed in I_3 treatment which was statistically similar with I_1 (140.17 cm) treatment at 60 DAS. Baloch *et al.* (2014) reported that delayed 1st irrigation up to 30 days after sowing impacted the plant height adversely. Elzubeir and Mohamed (2011) also reported that 10 days irrigation interval gave the highest values of plant height (201 & 205 cm) compered to others irrigation intervals in both year (2005/06 and 2006/07).

Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 1. Effect of irrigation frequencies on plant height of shada bhutta at different DAS (LSD_(0.05)=1.78, 5.26, 5.96 and 2.53 cm at 30, 60, 90 DAS and at harvest respectively)

4.1.1.2 Effect of spacing

Different spacing showed significant effect on plant height of shada bhutta at different days after sowing (Figure 2 and Appendix V). From the experiment result revealed that the maximum plant height (43.66 and 143.96 cm) at 30 and 60 DAS was observed in S_3 treatment which was statistically similar with S_4 (43.64 cm) treatment at 30 DAS; with S_2 (143.20 cm) and S_4 (142.93 cm) treatment at 60 DAS. At 90 DAS and at harvest respectively the maximum plant height (180.42 and 187.16 cm) was observed in S_4 treatment which was statistically similar with S_3 (178.26 cm) and S_2 (177.59 cm) treatment at 90 DAS. Whereas the minimum plant height (41.81, 136.88,

173.88 and 173.27 cm at 30, 60 90 DAS and at harvest respectively) was observed in S_1 treatment which was statistically similar with S_2 (41.58 cm) treatment at 30 DAS. Alam *et al.* (2020) and Ahmmed *et al.* (2020) also found similar result which supported the present study.

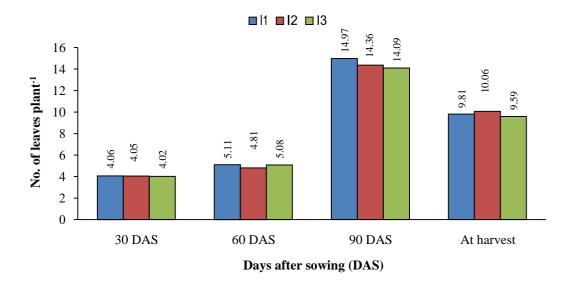
Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm.
Figure 2. Effect of spacing on plant height of shada bhutta at different DAS
(LSD_(0.05)=1.34, 5.10, 3.42 and 2.08 cm at 30, 60, 90 DAS and at harvest respectively)

4.1.1.3 Combined effect of irrigation frequency and spacing

Combined effect of irrigation frequency and spacing showed significant effect on plant height of shada bhutta (Table 1). From the experiment result exhibited that the maximum plant height (45.75 cm) at 30 DAS was observed in I_1S_3 treatment combination which was statistically similar with I_1S_1 (44.52 cm), I_1S_2 (44.41 cm), I_2S_4 (44.23 cm) and I_1S_4 (43.98 cm) treatment combination. At 60 DAS the maximum plant height (149.23 cm) was observed in I_2S_4 treatment combination which was statistically similar with I_1S_3 (148.30 cm), I_2S_1 (147.83 cm), I_3S_2 (147.80 cm), I_2S_3 (143.90 cm), I_2S_2 (142.35 cm) and I_3S_4 (141.45 cm) treatment combination. At 90 DAS and at harvest respectively the maximum plant height (187.47 and 192.10 cm) was observed in I_1S_4 treatment combination which was statistically similar with I_1S_2 (186.92 cm), I_1S_3 (183.87 cm), I_2S_4 (183.00), and I_1S_1 (181.75 cm) treatment

combination at 90 DAS; and with I_2S_4 (188.71 cm) treatment combination at harvest respectively. Whereas the minimum plant height (38.33 cm) at 30 DAS was observed in I_3S_2 treatment combination which was statistically similar with I_3S_1 (38.95 cm) treatment combination. At 60, 90 DAS and at harvest respectively the minimum plant height (128.01, 159.47 and 171.97 cm) was observed in I_3S_1 treatment combination which was statistically similar with I_1S_1 (134.80 cm) treatment combination at 60 DAS; with I_2S_1 (172.46 cm), I_3S_2 (174.48 cm) and I_1S_1 (175.38 cm) treatment combination at harvest respectively.

Treatments	Plant Height (cm) at			
combination	30 DAS	60 DAS	90 DAS	At harvest
I ₁ S ₁	44.52 ab	134.80 de	181.75 ab	175.38 fg
I_1S_2	44.41 ab	139.47 b-d	186.92 a	180.04 de
I_1S_3	45.75 a	148.30 ab	183.87 ab	186.14 bc
I_1S_4	43.98 a-c	138.12 cd	187.47 a	192.10 a
I_2S_1	41.94 c	147.83 ab	180.42 b	172.46 g
I_2S_2	42.00 c	142.35 a-d	178.17 bc	180.82 d
I2S3	42.61 bc	143.90 a-c	178.42 bc	184.78 c
I2S4	44.23 a-c	149.23 a	183.00 ab	188.71 ab
I3S1	38.95 d	128.01 e	159.47 e	171.97 g
I_3S_2	38.33 d	147.80 ab	167.68 d	174.48 fg
I3S3	42.61 bc	139.68 b-d	172.50 cd	177.21 ef
I3S4	42.71 bc	141.45 a-d	170.80 d	180.66 de
LSD(0.05)	2.32	8.83	5.92	3.60
CV(%)	3.17	3.63	1.95	1.16

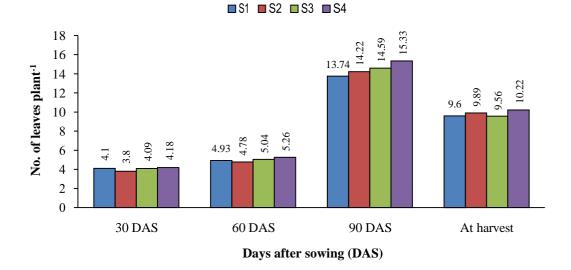

Table 1: Combined effect of different irrigation frequencies and plant spacing onplant height of shada bhutta at different DAS

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

4.1.2 No. of leaves plant⁻¹

4.1.2.1 Effect of irrigation frequency

A leaf is the principal lateral appendage of the vascular plant stem, usually borne above ground and specialized for photosynthesis. Different irrigation frequencies showed significant variation only at 60 and 90 DAS on number of leaves plant⁻¹ of shada bhutta (Figure 3 and Appendix VI). From the experiment result showed that the maximum number of leaves plant⁻¹ (4.06, 5.11 and 14.97 at 30, 60 and 90 DAS) was observed in I_1 treatment which was statistically similar with I_3 (5.08) treatment at 60 DAS. At harvest respectively the maximum number of leaves plant⁻¹ (10.06) was observed in I_2 treatment. Whereas the minimum number of leaves plant⁻¹ (4.02) at 30 DAS was observed in I₃ treatment, at 60 DAS the minimum number of leaves plant⁻¹ (4.81) was observed in I₂ treatment, at 90 DAS and at harvest respectively the minimum number of leaves plant⁻¹ (14.09 and 9.59) was observed in I_3 treatment which was statistically similar with I₂ (14.36) treatment at 90 DAS. Baloch et al. (2014) reported that number of green leaves in maize for fodder production is a quantity parameter; but this trait is generally influenced by level of input application. The results in regards to the number of green leave plant⁻¹ of fodder maize as influenced by different irrigation intervals. They revealed that the maximum number of green leaves plant⁻¹ (13.42) on average was achieved in crop given 1st irrigation at 20 days after sowing, 2nd at 35 days and 3rd after 50 days of sowing (T_1) ; by the delay in the first irrigation the number of green leaves plant⁻¹ slightly decreased to (12.70) and (11.10) in T_3 and T_4 treatments, respectively. The result was similar to the present study and found that delayed irrigation time impact on number of leaves plant⁻¹ of white maize.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 3. Effect of irrigation frequencies on number of leaves plant⁻¹ of shada bhutta at different DAS (LSD_(0.05)=0.12, 0.16, 0.52 and 0.52 at 30, 60, 90 DAS and at harvest respectively)

4.1.2.2 Effect of spacing

Different spacing showed significant effect on number of leaves plant⁻¹ of shada bhutta at various days after sowing (Figure 4 and Appendix VI). From the experiment result showed that the maximum number of leaves plant⁻¹ of shada bhutta (4.18, 5.26, 15.33 and 10.22 at 30, 60, 90 DAS and at harvest respectively) was observed in S₄ treatment which was statistically similar with S₁ (4.10) and S₃ (4.09) treatment at 30 DAS; and with S₃ (9.89) treatment at harvest respectively. Whereas the minimum number of leaves plant⁻¹ of shada bhutta (3.80 and 4.78 at 30 and 60 DAS) was observed in S₂ treatment, at 90 DAS the minimum number of leaves plant⁻¹ of shada bhutta (13.74) was observed in S₁ treatment and at harvest respectively the minimum number of leaves plant⁻¹ of shada bhutta (9.56) was observed in S₃ treatment which was statistically similar with S₁ (9.60) treatment. Ahmmed *et al.* (2020) stated that higher leaves number plant⁻¹ was achieved with higher plant spacing where lower plant spacing showed lower leaf number plant⁻¹.Jula *et al.* (2013) also found similar result which supported the present finding.

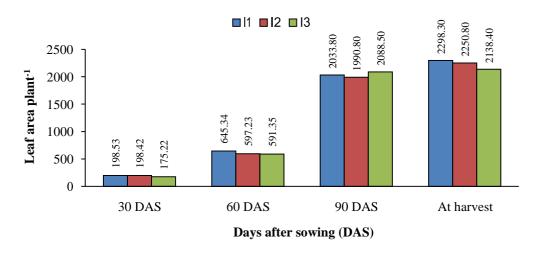
Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 4. Effect of spacing on number of leaves plant⁻¹ of shada bhutta at different DAS (LSD_(0.05)=0.09, 0.13, 0.40 and 0.40 at 30, 60, 90 DAS and at harvest respectively)

4.1.2.3 Combined effect of irrigation frequency and spacing

Combined effect of different irrigation frequency and spacing showed significant effect on number of leaves plant⁻¹ of shada bhutta at various days after sowing (Table 2). From the experiment result exhibited that the maximum number of leaves plant⁻¹ of shada bhutta (4.37 at 30 DAS) was observed in I₂S₁ treatment combination, which was statistically similar with I₁S₄ (4.34) treatment combination. At 60, 90 DAS and at harvest respectively the maximum number of leaves plant⁻¹ of shada bhutta (5.55, 16.11 and 10.44) was observed in I₁S₄ treatment combination which was statistically similar with I₂S₂ (10.44), I₂S₄ (10.22), I₃S₄ (10.00), I₂S₁ (9.78), I₂S₃ (9.78)

and I_1S_2 (9.78) treatment combination at harvest respectively. Whereas the minimum number of leaves plant⁻¹ of shada bhutta (3.77 at 30 DAS) was observed in I_1S_2 treatment combination which was statistically similar with I_2S_2 (3.80), I_3S_1 (3.83) and I_3S_2 (3.83) treatment combination. At 60 DAS the minimum number of leaves plant⁻¹ of shada bhutta (4.56) was observed in I_2S_2 treatment combination which was statistically similar with I_2S_1 (4.56) treatment combination. At 90 DAS the minimum number of leaves plant⁻¹ of shada bhutta (13.67) was observed in I_3S_1 treatment combination which was statistically similar with I_2S_2 (13.78), I_2S_1 (13.78), I_3S_2 (13.78), I_1S_1 (13.78) and I_3S_3 (13.89) treatment combination. And at harvest respectively the minimum number of leaves plant⁻¹ of shada bhutta (9.44) was observed in I_3S_3 treatment combination which was statistically similar with $I_3S_1(9.45)$, $I_3S_2(9.45)$, I_1S_3 (9.45) and I_1S_1 (9.56) treatment combination.

Treatments	Number of leaves plant ⁻¹ of white maize			
combination	30 DAS	60 DAS	90 DAS	At harvest
I ₁ S ₁	4.10 cd	5.00 bc	13.78 c	9.56 bc
I_1S_2	3.77 e	4.89 c	15.11 b	9.78 a-c
I_1S_3	4.03 d	5.00 bc	14.89 b	9.45 c
I_1S_4	4.34 ab	5.55 a	16.11 a	10.44 a
I_2S_1	4.37 a	4.56 d	13.78 c	9.78 a-c
I_2S_2	3.80 e	4.56 d	13.78 c	10.44 a
I_2S_3	4.03 d	5.11 bc	15.00 b	9.78 a-c
I_2S_4	4.00 d	5.00 bc	14.89 b	10.22 ab
I3S1	3.83 e	5.22 b	13.67 c	9.45 c
I ₃ S ₂	3.83 e	4.89 c	13.78 c	9.45 c
I ₃ S ₃	4.20 bc	5.00 bc	13.89 c	9.44 c
I ₃ S ₄	4.20 c	5.22 b	15.00 b	10.00 a-c
LSD(0.05)	0.16	0.23	0.70	0.70
CV(%)	2.30	2.64	2.82	4.16


Table 2: Combined effect of irrigation frequency and spacing on number ofplant⁻¹ of shada bhutta at different DAS

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

4.1.3 Leaf area plant⁻¹ (cm²)

4.1.3.1 Effect of irrigation frequency

Leaves are one of the most important organs that plants have. Photosynthesis, is the process by which plants produce food using light, carbon dioxide (CO₂), and water, takes place in leaves. The structure and makeup of leaves are designed for photosynthesis. Light is captured by chloroplasts in leaves, if the leaf area increase its capture more light energy to produce food. Carbon dioxide is taken in through stomata, or openings on the underside of leaves. Higher concentrations of carbon dioxide make plants more productive because photosynthesis relies on using the sun's energy to synthesise sugar out of carbon dioxide and water. Plants and ecosystems use the sugar both as an energy source and as the basic building block for growth. Leaf area influence the Carbon dioxide uptake by plant and thus influence growth on the plant. Due to different irrigation frequencies, significant effect was observed in leaf area plant⁻¹ (cm²) of shada bhutta at various days after sowing (Figure 5 and Appendix VII). From the experiment result showed that the maximum leaf area plant⁻¹ (198.53 and 645.34 cm² at 30 and 60 DAS) was observed in I₁ treatment which was statistically similar with I₂ (198.42) treatment at 30 DAS. At 90 DAS the maximum leaf area plant⁻¹ (2088.50 cm²) was observed in I_3 treatment which was statistically similar with I_1 (2033.80 cm²) treatment. And at harvest the maximum leaf area plant⁻¹ (2298.30 cm²) was observed in I_1 treatment which was statistically similar with I_2 (2250.80 cm²) treatment. Whereas the minimum leaf area plant⁻¹ (175.22 and 591.35 cm² at 30 and 60 DAS) was I_3 treatment which was statistically similar with I_2 (597.23 cm²) treatment at 60 DAS. At 90 DAS the minimum leaf area plant⁻¹ (1990.80 cm²) was observed in I₂ treatment. And at harvest the minimum leaf area plant⁻¹ (2138.40 cm²) was observed in I₃ treatment. Appropriate irrigation frequency reduce water stress condition of the plant. If the irrigation frequency delayed it will cause water stress and reduction of soil moisture resulted in reduction of the total amount of leaf area developed which ultimately impact on dry matter production and reduction of the yield of the plant.

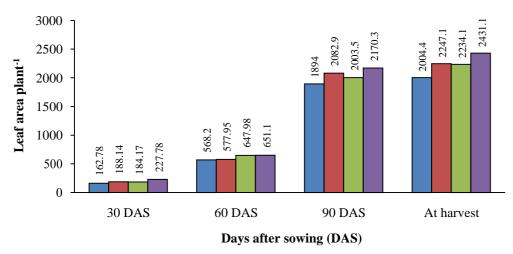

Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 5. Effect of irrigation frequencies on leaf area plant⁻¹ of shada bhutta at different DAS (LSD_(0.05)=4.22, 38.16, 80.15 and 103.47 cm² at 30, 60, 90 DAS and at harvest respectively)

4.1.3.2 Effect of spacing

Different spacing showed significant effect on leaf area plant⁻¹ of shada bhutta at various days after sowing (Figure 6 and Appendix VII). From the experiment result exhibited that the maximum leaf area plant⁻¹ (227.78, 651.10, 2170.3 and 2431.1 cm^2 at 30, 60, 90 DAS and at harvest respectively) was observed in S₄ treatment, which was statistically similar with S_3 (647.98 cm²) treatment at 60 DAS. Whereas the minimum leaf area plant⁻¹ (162.78, 568.20, 1894.0 and 2004.4 cm² at 30, 60, 90 DAS and at harvest respectively) was observed in S_1 treatment, which was statistically similar with S_2 (577.95 cm²) treatment at 60 DAS. Spacing influence on leaf area of the plant.Closer spacing reduced the leaf area due increased intra plant to an competition. So proper spacing must be maintain to reduce intra plant competition which ultimately influence on the leaf area of the plant. The result obtained from the present study was similar with the findings of Enujeke (2013 a).

■ S1 ■ S2 ■ S3 ■ S4

Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 6. Effect of spacing on leaf area plant⁻¹of shada bhutta at different DAS (LSD_(0.05)= 3.33, 30.79, 63.93 and 80.87cm² at 30, 60, 90 DAS and at harvest respectively)

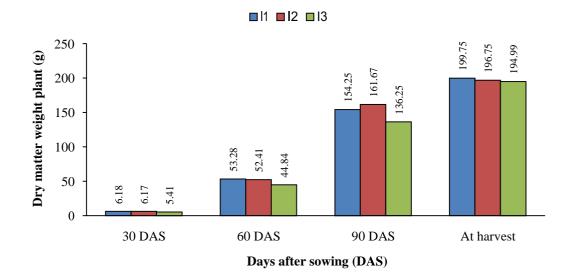
4.1.3.3 Combined effect of irrigation frequency and spacing

Combined effect of irrigation frequency and spacing showed significant effect on leaf area plant⁻¹ (cm²) of shada bhutta at various days after sowing (Table 3). From the experiment result showed that the maximum leaf area plant⁻¹ (252.81, 716.24, 2387.5 and 2760.1 cm² at 30, 60, 90 DAS and at harvest respectively) was observed in I₁S₄ treatment combination, which was statistically similar with I₁S₃ (701.97 cm²) treatment combination at 60 DAS; and with I₃S₂ (2339.9 cm²) treatment combination at 60 DAS. Whereas the minimum leaf area plant⁻¹ (177.32 cm² at 30 DAS) was observed in I₁S₂ treatment combination, which was statistically similar with I₂S₃ (167.32 cm²) treatment combination at 30 DAS. At 60, 90 DAS and at harvest respectively the minimum leaf area plant⁻¹ (540.27, 1800.9 and 1915.1 cm²) was observed in I₃S₁ treatment combination, which was statistically similar with I₃S₂ (561.19 cm²), I₁S₁ (578.40 cm²), I₁S₂ (584.74 cm²), I₂S₁ (585.91 cm²) and I₂S₂ (587.92

cm²) treatment combination at 60 DAS; with I_1S_3 (1870.6 cm²) treatment combination at 90 DAS; and with I_1S_1 (1968.6 cm²) and I_3S_2 (2010.4 cm²) treatment combination at harvest respectively.

Treatments		Plant leaves a	rea (cm ²) at	
combination _	30 DAS	60 DAS	90 DAS	At harvest
I ₁ S ₁	177.32 f	578.40 с-е	1928.0 cd	1968.6 fg
I_1S_2	164.99 g	584.74 b-e	1949.1 cd	2402.6 b
I_1S_3	198.99 d	701.97 a	1870.6 de	2062.1 ef
I_1S_4	252.81 a	716.24 a	2387.5 a	2760.1 a
I_2S_1	224.96 c	585.91 b-e	1953.0 cd	2129.4 de
I_2S_2	202.34 d	587.92 b-e	1959.7 cd	2328.3 bc
I2S3	167.32 g	611.34 b-d	2037.8 bc	2298.1 bc
I_2S_4	199.05 d	603.75 b-d	2012.5 bc	2247.3 cd
I ₃ S ₁	86.07 h	540.27 e	1800.9 e	1915.1 g
I3S2	197.10 d	561.19 de	2339.9 a	2010.4 e-g
I3S3	186.21 e	630.63 bc	2102.1 b	2342.1 bc
I3S4	231.48 b	633.30 b	2111.0 b	2285.9 bc
LSD(0.05)	5.78	53.33	110.73	140.06
CV(%)	1.77	5.09	3.17	3.66

Table 3: Combined effect of irrigation frequency and spacing on leaf areaplant⁻¹ of shada bhutta at different DAS


In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

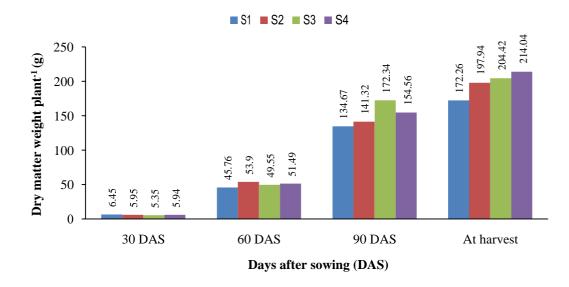
4.1.4 Dry matter weight plant⁻¹ (g)

4.1.4.1 Effect of irrigation frequency

The dry matter of plant consists of all its constituents excluding water. Irrigation frequency showed significant effect on dry matter weight plant⁻¹ of shada bhutta at various days after sowing (Figure 7 and Appendix VIII). From the experiment result showed that the maximum dry matter plant⁻¹ (6.18 and 53.28 g at 30 and 60 DAS) was observed in I₁ treatment which was statistically similar with I₂ (6.17 and 52.41 g) treatment at 30 and 60 DAS. At 90 DAS the maximum dry matter plant⁻¹ (161.67 g) was observed in I₂ treatment which was statistically similar with I₁ (154.25 g)

treatment. And at harvest respectively the maximum dry matter plant⁻¹ (199.75 g) was observed in I₁ treatment which was statistically similar with I₂ (196.75 g) treatment. Whereas the minimum dry matter plant⁻¹ (5.41, 44.84, 136.25 and 194.99 g at 30, 60, 90 DAS and at harvest respectively) was observed in I₃ treatment. Irrigation frequency established a nearly constant water regime in the root zone and ensured that plants grew under proper soil water conditions for optimum production of the dry biomass of the plant which ultimately influence proper growth and development of the plant. Taiz and Zeiger (2009) reported that the low availability of water may interfere with the photosynthetic activity, reducing the growth and, consequently reducing the biomass accumulation of the plants.

Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval


Figure 7. Effect of irrigation frequencies on dry matter weight plant⁻¹ of shada bhutta at different DAS (LSD_(0.05)= 0.56, 4.37, 11.26 and 4.46 g at 30, 60, 90 DAS and at harvest respectively)

4.1.4.2 Effect of spacing

Spacing showed significant effect on dry matter weight plant⁻¹ of shada bhutta at various days after sowing (Figure 8 and Appendix VIII). From the experiment result exhibited that the maximum dry matter weight plant⁻¹ (6.45 g at 30 DAS) was observed in S_1 treatment which was statistically similar with S_2 (5.95 g) and S_4 (5.94

g) treatment. At 60 DAS the maximum dry matter weight plant⁻¹ (53.90 g) was

observed in S₂ treatment which was statistically similar with S₄ (51.49 g). At 90 DAS the maximum dry matter weight plant⁻¹ (172.34 g) was observed in S₃ treatment and finally at harvest the maximum dry matter weight plant⁻¹ (214.04 g) was observed in S₄ treatment. Whereas the minimum dry matter weight plant⁻¹ (5.35 g at 30 DAS) was observed in S₃ treatment. At 60, 90 DAS and at harvest respectively the minimum dry matter weight plant⁻¹ (45.76, 134.67 and 172.26 g) was observed in S₁ treatment which was statistically similar with S₃ (49.55 g) at 60 DAS; and with S₂ (141.32) treatment at 90 DAS. Getaneh *et al.* (2016) reported that the highest above ground dry biomass yields plant⁻¹ was occurred at the widest inter and intra-row spacing, might be due to high stem diameter and high leaf area because there is more availability of growth factors and better penetration of light at wider row spacing.

Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm.
Figure 8. : Effect of spacing on dry matter weight plant⁻¹of shada bhutta at different DAS (LSD_(0.05)= 0.53, 3.85, 9.91 and 4.45 g at 30, 60, 90 DAS and at harvest respectively)

4.1.4.3 Combined effect of irrigation frequency and spacing

The dry matter weight plant⁻¹ of shada bhutta at different days after sowing varied significantly for the combined application of irrigation frequencies and spacing (Table 4). From the experiment result showed that the maximum dry matter weight plant⁻¹ (7.92 g at 30 DAS) was observed in I₂S₁ treatment combination which was statistically similar with I₁S₁ (7.91 g), I₃S₄(7.43 g) and I₂S₂ (7.37 g)treatment combination. At 60 DAS the maximum dry matter weight plant⁻¹ (57.28 g) was observed in I₃S₁ treatment combination which was statistically similar with I₁S₂ (56.73 g), I₁S₃ (56.04 g), I₁S₄(55.77 g), I₂S₄ (52.73 g), I₂S₂ (52.55 g) and I₃S₃ (52.43 g)

treatment combination. At 90 DAS the maximum dry matter weight plant⁻¹ (177.10 g) was observed in I_1S_3 treatment combination which was statistically similar with $I_3S_3(174.76 \text{ g})$, $I_2S_4(172.69 \text{ g})$, $I_1S_4(169.40 \text{ g})$, I_2S_3 (165.18 g) and I_2S_2 (161.92 g) treatment combination. And at harvest respectively the maximum dry matter weight plant⁻¹ (216.31 g) was observed in I_1S_4 treatment combination which was statistically similar with I_2S_4 (213.69 g) and I_3S_4 (212.12 g) treatment combination. Whereas the minimum dry matter weight plant⁻¹(3.51 g at 30 DAS) was observed in I_3S_1 treatment combination. At 60 and 90 DAS the minimum dry matter weight plant⁻¹ (35.43 and 121.50 g) was observed in I_3S_2 treatment combination which was statistically similar with I_3S_4 (121.60 g), I_3S_1 (127.15 g), and I_1S_1 (129.98 g) treatment combination at 90 DAS. And at harvest respectively the minimum dry matter weight plant⁻¹ (167.59 g)

was observed in I₂S₁ treatment combination which was statistically similar with

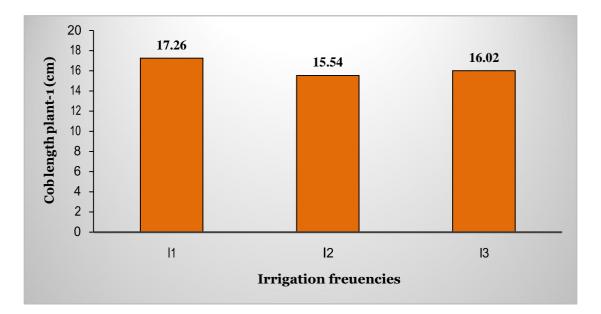
 $I_1S_1(171.99 \text{ g})$ treatment combination.

Treatments	Dry matter plant ⁻¹ (g) at			
combination _	30 DAS	60 DAS	90 DAS	At harvest
I ₁ S ₁	7.91 a	44.57 d	129.98 с-е	171.99 fg
I_1S_2	5.34 b-d	56.73 a	140.55 cd	204.08 cd
I_1S_3	6.04 b	56.04 a	177.10 a	206.63 bc
I_1S_4	5.44 bc	55.77 a	169.40 a	216.31 a
I2S1	7.92 a	45.96 cd	146.88 bc	167.59 g
I_2S_2	7.37 a	52.55 а-с	161.92 ab	198.84 d
I2S3	4.44 d	47.08 b-d	165.18 a	206.90 bc
I2S4	4.94 cd	52.73 ab	172.69 a	213.69 ab
I3S1	3.51 e	57.28 a	127.15 de	177.21 f
I_3S_2	5.13 b-d	35.43 e	121.50 e	190.90 e
I3S3	5.56 bc	52.43 а-с	174.76 a	199.73 cd
I3S4	7.43 a	45.55 d	121.60 e	212.12 ab
LSD(0.05)	0.91	6.66	17.16	7.71
CV(%)	9.0	7.74	6.64	2.28

 Table 4: Combined effect of irrigation frequency and spacing on dry matter

plant⁻¹ of shada bhutta at different DAS

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

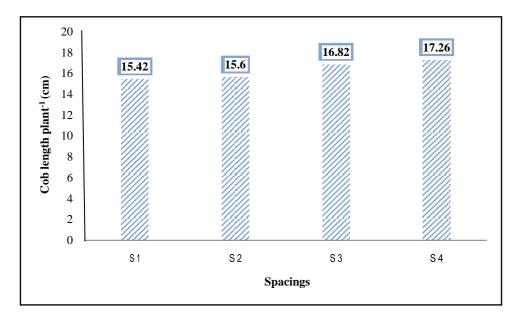

4.2 Yield contributing characters

4.2.1 Cob length plant⁻¹

4.2.1.1 Effect of irrigation frequency

Irrigation frequency showed significant variation in respect of cob length plant⁻¹ of shada bhutta (Figure 9 and Appendix IX). From the experiment result revealed that the maximum cob length plant⁻¹ (17.26 cm) was observed in I₁ treatment whereas the minimum cob length plant⁻¹ (15.536 cm) was observed in I₂ treatment which was statistically similar with I₃ (16.02 cm) treatment. Elzubeir and Mohamed (2011)

reported that prolonging irrigation intervals reduce cob length. The result was similar with the present study.



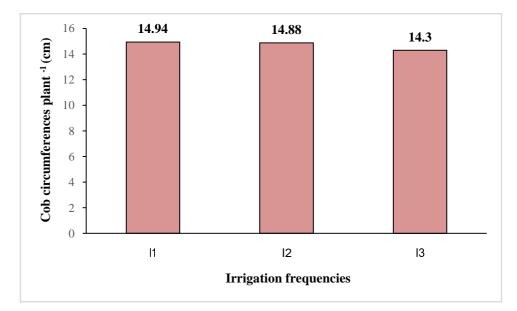
Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 9. Effect of irrigation frequencies on cob length plant⁻¹ of shada bhutta (LSD_(0.05)= 0.76 cm)

4.2.1.2 Effect of spacing

Spacing showed significant variation in respect of cob length plant⁻¹ of shada bhutta (Figure 10 and Appendix IX). From the experiment result revealed that the maximum cob length plant⁻¹ (17.26 cm) was observed in S₄ treatment which was statistically similar with S₃ (16.82 cm) treatment whereas the minimum cob length plant⁻¹ (15.42 cm) was observed in S₁ treatment which was statistically similar with S₂ (15.60 cm) treatment. These results agreed with Alam *et al.* (2020) and Koirala *et al.* (2020).

Spacings *viz*. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 10. Effect of spacings on cob length plant⁻¹ of shada bhutta (LSD_(0.05)= 0.61 cm)

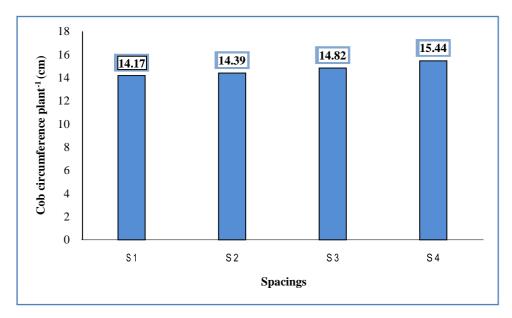

4.2.1.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of cob length plant⁻¹ of shada bhutta (Table 5). From the experiment result exhibited that the maximum cob length plant⁻¹ (18.12 cm) was observed in I_1S_4 treatment combination which was statistically similar with I_1S_3 (17.95 cm) and I_3S_4 (17.42 cm) treatment combination. Whereas the minimum cob length plant⁻¹ (14.90 cm) was observed in I_2S_1 treatment combination which was statistically similar with I_2S_2 (14.98 cm), I_3S_1 (15.04 cm) and I_3S_2 (15.17 cm) treatment combination.

4.2.2 Cob circumference plant⁻¹

4.2.2.1 Effect of irrigation frequency

Irrigation frequency showed significant variation in respect of cob circumference plant⁻¹ of shada bhutta (Figure 11 and Appendix IX). From the experiment result revealed that the maximum cob circumference plant⁻¹ (14.94 cm) was observed in I₁ treatment which was statistically similar with I₂ (14.88 cm) treatment. Whereas the minimum cob circumference plant⁻¹ (14.30 cm) was observed in I₃ treatment.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 11. Effect of irrigation frequencies on cob circumference plant⁻¹ of shada bhutta (LSD_(0.05)= 0.52 cm)

4.2.2.2 Effect of spacing

Spacing showed significant variation in respect of cob circumference plant⁻¹ of shada bhutta (Figure 12 and Appendix IX).From the experiment result revealed that the maximum cob circumference plant⁻¹ (15.44 cm) was observed in S₄ treatment. Whereas the minimum cob circumference plant⁻¹ (14.17 cm) was observed in S₁ treatment which was statistically similar with S₂ (14.39 cm) treatment. Ahmmed *et al.* (2020) and Hasan *et al.* (2018) reported that wider spacing showed the highest cob circumference which is due to the reason that wider spacing reducing the competition among the plants and help in proper utilization of its surrounding resources which ultimately impact on yield contributing characters of the plant.

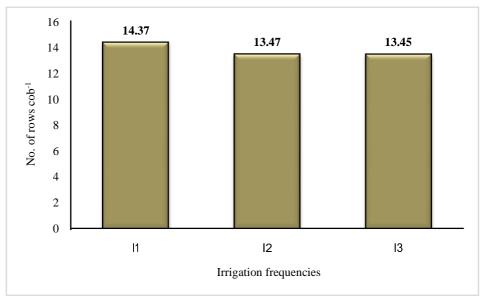
Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. **Figure 12. Effect of spacings on cob circumference plant⁻¹ of shada bhutta** (LSD(0.05)= 0.61 cm)

4.2.2.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of cob circumference plant⁻¹ of shada bhutta (Table 5). From the experiment result exhibited that the maximum cob circumference plant⁻¹ (15.81 cm) was observed in I₁S₄ treatment combination which was statistically similar with I₂S₃ (15.67 cm) treatment combination. Whereas the minimum cob circumference plant⁻¹ (13.87 cm) was observed in I₃S₁ treatment combination which was statistically similar with I₃S₂ (14.06 cm), I₂S₁ (14.14 cm), I₁S₂ (14.38 cm), I₃S₃ (14.42 cm) and I₁S₁ (14.52 cm) treatment combination.

Treatments combination	Cob length plant ⁻¹	Cob circumference plant ⁻¹
I_1S_1	16.33 c	14.52 с-е
I_1S_2	16.66 bc	14.38 с-е
I_1S_3	17.95 a	15.04 bc
I_1S_4	18.12 a	15.81 a
I_2S_1	14.90 e	14.14 de
I_2S_2	14.98 de	14.73 cd
I2S3	16.03 cd	15.00 bc
I2S4	16.23 c	15.67 ab
I_3S_1	15.04 de	13.87 e
I_3S_2	15.17 de	14.06 de
I ₃ S ₃	16.47 bc	14.42 с-е
I3S4	17.42 ab	14.85 c
LSD(0.05)	1.05	0.70
CV(%)	3.76	2.78

 Table 5: Combined effect of irrigation frequency and spacing on cob length and cob circumference plant⁻¹ of shada bhutta


In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

4.2.3 No. of rows cob⁻¹

4.2.3.1 Effect of irrigation frequency

Irrigation frequency showed significant effect on number of rows cob^{-1} of shada bhutta (Figure 13 and Appendix X). From the experiment result revealed that the maximum number of rows cob^{-1} (14.37) was observed in I₁ treatment. Whereas the minimum number of rows cob^{-1} (13.45) was observed in I₃ treatment which was statistically similar with I₂ (13.47) treatment. Elzubeir and Mohamed (2011) reported that prolonging watering intervals reduced the number of rows/cob, this reduction was due to the reason that prolonging watering intervals causes water stress/ low water levels condition surrounding by the root zone of the plant. With low water levels

condition its reducing the plant's ability to photosynthesize, the plant's system processes slow down, causing reduced or delayed growth and discoloration of leaves, as well as flower or fruit drop, since the plant can't support this extra baggage which ultimately impact grain production as a result it cause reduction of number of rows/cob.

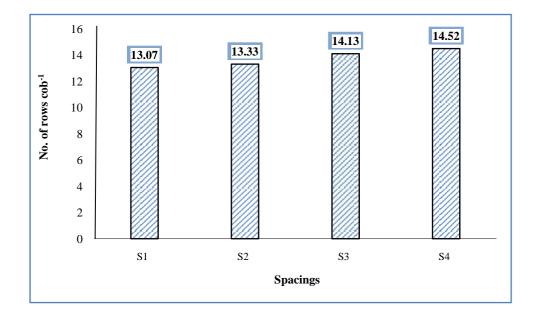

Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 13. Effect of irrigation frequencies on number of rows cob⁻¹ of shada bhutta (LSD_(0.05)= 0.42)

4.2.3.2 Effect of spacing

Spacing showed significant effect on number of rows cob^{-1} of shada bhutta (Figure 14 and Appendix X). From the experiment result revealed that the maximum number of rows cob^{-1} (14.52) was observed in S₄ treatment. Whereas the minimum number of rows cob^{-1} (13.07) was observed in S₁ treatment which was statistically similar with S₂ (13.33) treatment. This could be due to the fact that at closer spacing or high plant densities, there may be intense intra specific competition among plants for growth resources like nutrients, soil moisture, light, and carbon dioxide, thus, the supply of growth resources to growing cob is reduced in turn to reduce the number of cob per plant. High plant density creates competition for light, aeration, nutrients and consequently compelling the plants to undergo less reproductive growth which

ultimately cause reduction of rows cob⁻¹. Azam (2017) and Rahman *et al.* (2016) also found similar result which supported the present finding.

Spacings *viz.* S_1 : 40 cm × 20 cm, S_2 : 40 cm ×25 cm, S_3 : 50 cm × 20 cm and S_4 : 50 cm × 25 cm.

Figure 14. Effect of spacings on number of rows cob^{-1} of shada bhutta (LSD_(0.05)= 0.36)

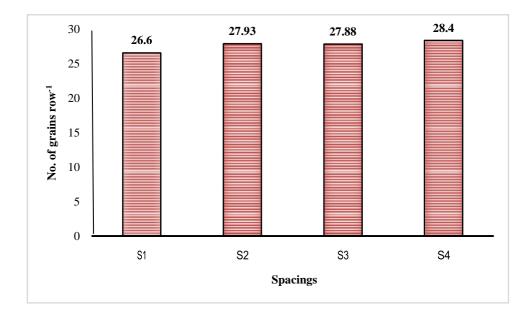
4.2.3.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of number of rows cob^{-1} of shada bhutta (Table 6). From the experiment result exhibited that the maximum number of rows cob^{-1} (15.67) was observed in I₁S₄ treatment combination which was statistically similar with I₁S₃ (15.28) treatment combination. Whereas the minimum number of rows cob^{-1} (13.00) was observed in I₃S₁ treatment combination which was statistically similar with all other treatment except I₂S₄ (13.89), I₃S₄(14.00), I₁S₃(15.28) and I₁S₄ (15.67) treatment combination.

4.2.4 No. of grains row⁻¹

4.2.4.1 Effect of irrigation frequency

Non significant variation was observed on number of grains row⁻¹ of shada bhutta due to irrigations frequencies (Figure 15 and Appendix X). From the experiment result revealed that the maximum number of grains row⁻¹ (27.88) was observed in I₁ treatment. Whereas the minimum number of grains row⁻¹(27.64) was observed in I₃ treatment.



Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 15. Effect of irrigation frequencies on number of grains row⁻¹ of shada bhutta (LSD_(0.05)= NS)

4.2.4.2 Effect of spacing

Spacing showed significant effect on number of grains row⁻¹ of shada bhutta (Figure 16 and Appendix X). From the experiment result revealed that the maximum number of grains row⁻¹ (28.40) was observed in S₄ treatment. Whereas the minimum number of grains row⁻¹ (26.60) was observed in S₁ treatment. Eyasu *et al.* (2018) and Rahman *et al.* (2016) also found similar result which supported the present finding.

Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. **Figure 16. Effect of spacings on number of grains row⁻¹ of shada bhutta** (LSD_(0.05)= 0.44)

4.2.4.3 Combined effect of irrigation frequency and spacing

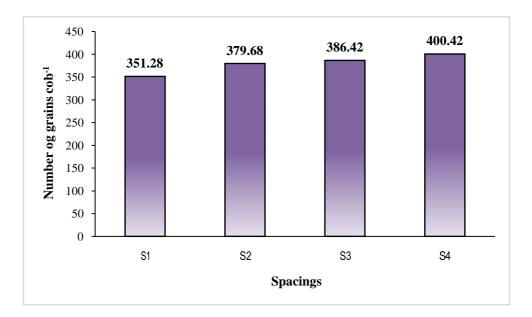
The combined effect of irrigation frequency and spacing showed significant variation in respect of number of grains row⁻¹ of shada bhutta (Table 6). From the experiment result exhibited that the maximum number of grains row⁻¹ (28.66) was observed in I_1S_4 treatment combination which was statistically similar with I_3S_3 (28.56), I_1S_2 (28.44), I_2S_4 (28.33), I_3S_4 (28.22) and I_2S_2 (27.89) treatment combination. Whereas the minimum number of grains row⁻¹ (26.34) was observed in I_3S_1 treatment combination which was statistically similar with I_1S_1 (26.56), and I_2S_1 (26.89) treatment combination.

4.2.5 No. of grains cob⁻¹

4.2.5.1 Effect of irrigation frequency

Significant variation was observed on number of grains cob^{-1} of shada bhutta due to irrigations frequencies (Figure 17 and Appendix X). From the experiment result revealed that the maximum number of grains cob^{-1} (390.29) was observed in I₁ treatment. Whereas the minimum number of grains cob^{-1} (373.95) was observed in I₃ treatment which was statistically similar with I₂ (374.12) treatment. Elzubeir and

Mohamed (2011) reported that frequent/short irrigation interval would provides the crop with adequate moisture in the surface layer in which most of the maize roots exists, thus resulting in better crop nourishment and consequently higher yield. Also, the final grain yield depends upon the number of seeds/cob produced and extent to which the grains are filled. Water deficits affected the number of seeds/cob thereby compounding the effects on final grain yield. These results agreed with the present study.



Irrigation frequencies *viz*. I_1 :Irrigation at 30 days interval, I_2 : Irrigation at 35 days interval and I_3 : Irrigation at 40 days interval

Figure 17. Effect of irrigation frequencies on number of grains cob⁻¹ of shada bhutta (LSD_(0.05)= 16.03)

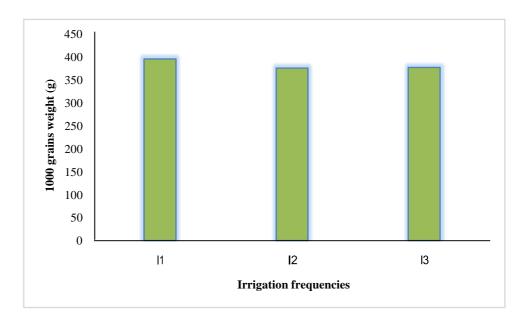
4.2.5.2 Effect of spacing

Spacing showed significant effect on number of grains cob^{-1} of white maize(Figure 18 and Appendix X). From the experiment result revealed that the maximum number of grains cob^{-1} (400.42) was observed in S₄ treatment. Whereas the minimum number of grains cob^{-1} (351.28) was observed in S₁ treatment. Ahmmed *et al.* (2020) concluded that in respect of the spacing effect, the wider spacing showed the highest number of grain per cob compared to other spacings.

Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. **Figure 18. Effect of spacings on number of grains cob⁻¹ of shada bhutta**

$(LSD_{(0.05)}=10.40)$

4.2.5.3 Combined effect of irrigation frequency and spacing

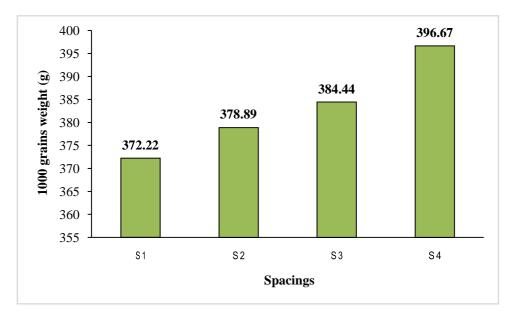

The combined effect of irrigation frequency and spacing showed significant variation in respect of number of grains cob^{-1} of shada bhutta (Table 6). From the experiment result exhibited that the maximum number of grains cob^{-1} (419.22) was observed in I₁S₄ treatment combination which was statistically similar with I₁S₃ (414.72) and I₃S₄ (404.32) treatment combination. Whereas the minimum number of grains cob^{-1} (341.75) was observed in I₃S₁ treatment combination which was statistically similar with I₁S₁ (347.61) treatment combination.

4.2.6 1000 grains weight (g)

4.2.6.1 Effect of irrigation frequency

Significant variation was observed on 1000 grains weight (g) of shada bhutta due to irrigations frequencies (Figure 19 and Appendix X). From the experiment result revealed that the maximum 1000 grains weight (395.83 g) was observed in I₁ treatment. Whereas the minimum 1000 grains weight (375.83 g) was observed in I₂ treatment which was statistically similar with I₃ (377.50 g) treatment. This happened due to the timely unhindered supply of irrigation water which kept soil as moist condition in the root zone of the plant and helps in uptake proper nutrient and reduce

stress condition which ultimately increased the 1000-seed weight as well as seed yield of the plant. Shen *et al.* 2020, Abd El-Halim and Abd El-Razek (2013) and Elzubeir and Mohamed (2011) also found similar result which supported the present finding.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 19. Effect of irrigation frequencies on 1000 grains weight (g) of shada bhutta (LSD_(0.05)= 8.01 g)

4.2.6.2 Effect of spacing

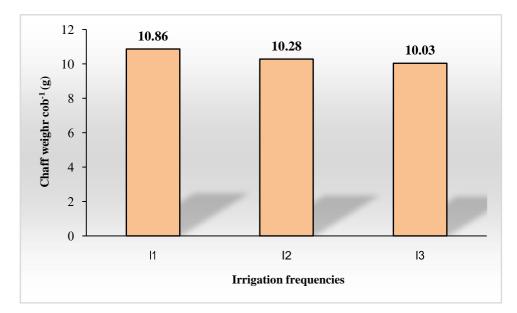
Spacing showed significant effect on 1000 grains weight (gm) of shada bhutta (Figure 20 and Appendix X). From the experiment result revealed that the maximum 1000 grains weight (396.67 g) was observed in S₄ treatment. Whereas the minimum 1000 grains weight (372.22 g) was observed in S₁ treatment. Koirala *et al.* (2020); Hasan *et al.* (2018) and Azam (2017) found similar result which supported the present study.

Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 20. Effect of spacings on 1000 grains weight (gm) of shada bhutta (LSD(0.05)= 4.37 g)

4.2.6.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of 1000 grains weight (g) of shada bhutta (Table 6). From the experiment result exhibited that the maximum 1000 grains weight (413.33 g) was observed in I_1S_4 treatment combination. Whereas the minimum 1000 grains weight (363.33 g) was observed in I_3S_1 treatment combination which was statistically similar with I_2S_1 (366.67 g) treatment combination.

Treatments combination	No. of row cob ⁻¹	No. grains row ⁻¹	No. of grains cob ^{.1}	1000 grains weight (gm)
I_1S_1	13.09 d	26.56 fg	347.61 ef	386.67 b-d
I_1S_2	13.45 b-d	28.44 ab	379.59 cd	390.00 bc
I_1S_3	15.28 a	27.87 b-d	414.72 a	393.33 b
I_1S_4	15.67 a	28.66 a	419.22 a	413.33 a
I_2S_1	13.11 d	26.89 e-g	364.49 de	366.67 fg
I_2S_2	13.33 cd	27.89 a-d	387.35 bc	373.33 ef
I2S3	13.56 b-d	27.22 d-f	366.91 d	380.00 de
I_2S_4	13.89 bc	28.33 ab	377.73 cd	383.33 cd
I3S1	13.00 d	26.34 g	341.75 f	363.33 g
I_3S_2	13.22 d	27.45 с-е	372.10 cd	373.33 ef
I3S3	13.56 b-d	28.56 ab	377.63 cd	380.00 de
I3S4	14.00 b	28.22 а-с	404.32 ab	393.33 b
LSD(0.05)	0.62	0.77	18.0	7.56
CV(%)	2.64	1.61	2.77	1.15

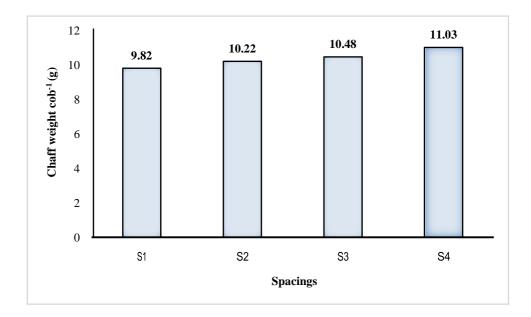

Table 6: Combined effect of irrigation frequency and spacing on no. of row cob⁻¹, no. grains row⁻¹, no. of grains cob⁻¹ and 1000 grains weight of shada bhutta

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

4.2.7 Chaff weight cob⁻¹ (g)

4.2.7.1 Effect of irrigation frequency

Different irrigation frequencies showed significant effect on chaff weight cob^{-1} (g) of shada bhutta (Figure 21 and Appendix XI). From the experiment result exhibited that the maximum chaff weight cob^{-1} (10.86 g) was observed in I₁ treatment, which was statistically similar with I₂ (10.28 g) treatment, whereas the minimum chaff weight cob^{-1} (10.03 g) was observed in I₃ treatment.



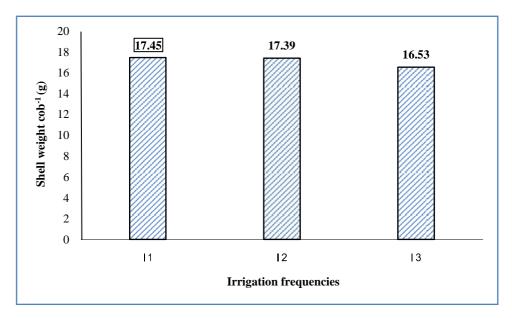
Irrigation frequencies *viz*. I_1 :Irrigation at 30 days interval, I_2 : Irrigation at 35 days interval and I_3 : Irrigation at 40 days interval

Figure 21. Effect of irrigation frequencies on chaff weight cob⁻¹ (g) of shada bhutta (LSD_(0.05)= 0.64 g)

4.2.7.2 Effect of spacing

Different spacing showed significant effect on chaff weight cob^{-1} (g) of shada bhutta (Figure 22 and Appendix XI).From the experiment result revealed that the maximum chaff weight cob^{-1} (11.03 g) was observed in S₄ treatment. Whereas the minimum chaff weight cob^{-1} (9.82 g) was observed in S₁ treatment which was statistically similar with S₂ (10.22 g) treatment.

Spacings *viz*. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 22. Effect of spacings on chaff weight cob⁻¹ (g) of shada bhutta (LSD_(0.05)= 0.52 g)

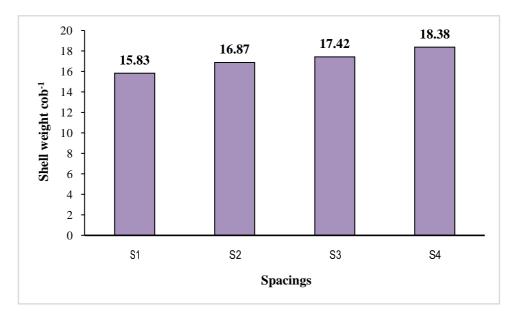

4.2.7.3 Combined effect of irrigation frequency and spacing

The combined effect of different irrigation frequencies and spacings showed significant variation in respect of chaff weight cob^{-1} (g) of shada bhutta (Table 7). From the experiment result exhibited that the maximum chaff weight cob^{-1} (12.20 g) was observed in I_1S_4 treatment combination. Whereas the minimum chaff weight cob^{-1} (9.67 g) was observed in I_3S_1 treatment combination which was statistically similar with all other treatment except I_1S_4 and I_1S_3 (10.78 g) treatment combination.

4.2.8 Shell weight cob⁻¹

4.2.8.1 Effect of irrigation frequency

Different irrigation frequencies showed significant effect on shell weight cob^{-1} (g) of shada bhutta (Figure 23 and Appendix XI). From the experiment result exhibited that the maximum shell weight cob^{-1} (17.45 g) was observed in I₁ treatment, which was statistically similar with I₂ (17.39 g) treatment, whereas the minimum shell weight cob^{-1} (16.53 g) was observed in I₃ treatment.



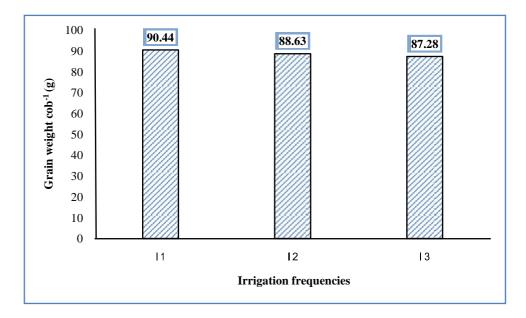
Irrigation frequencies *viz*. I_1 :Irrigation at 30 days interval, I_2 : Irrigation at 35 days interval and I_3 : Irrigation at 40 days interval

Figure 23. Effect of irrigation frequencies on shell weight cob⁻¹ (g) of shada bhutta (LSD_(0.05)= 0.65 g)

4.2.8.2 Effect of spacing

Different spacing showed significant effect on shell weight cob^{-1} (g) of shada bhutta (Figure 24 and Appendix XI).From the experiment result revealed that the maximum shell weight cob^{-1} (18.38 g) was observed in S₄ treatment. Whereas the minimum shell weight cob^{-1} (15.83 g) was observed in S₁ treatment.

Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 24. Effect of spacings on shell weight cob⁻¹ (g) of shada bhutta (LSD_(0.05)= 0.51 g)

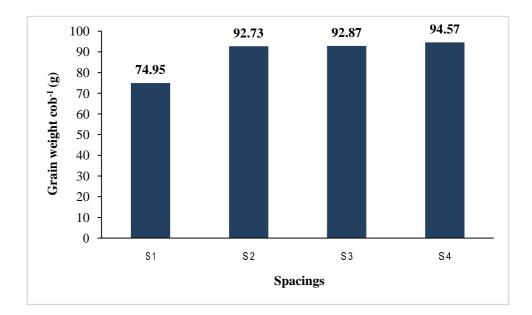

4.2.8.3 Combined effect of irrigation frequency and spacing

The combined effect of different irrigation frequencies and spacings showed significant variation in respect of shell weight cob^{-1} (gm) of shada bhutta (Table 7). From the experiment result exhibited that the maximum shell weight cob^{-1} (18.70 gm) was observed in I₁S₄ treatment combination which was statistically similar with I₂S₄ (18.53 gm) and I₁S₃ (17.92 gm) treatment combination. Whereas the minimum shell weight cob^{-1} (14.43 gm) was observed in I₃S₁ treatment combination.

4.2.9 Grain weight cob⁻¹ (g)

4.2.9.1 Effect of irrigation frequency

Significant variation was observed on grain weight cob^{-1} (g) of shada bhutta due to irrigations frequency (Figure 25 and Appendix XI). From the experiment result revealed that the maximum grain weight cob^{-1} (90.44 g) was observed in I₁ treatment. Whereas the minimum grain weight cob^{-1} (87.28 g) was observed in I₃ treatment.



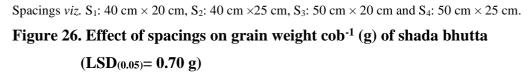
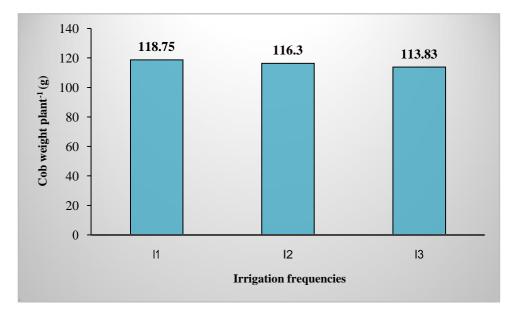

Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 25. Effect of irrigation frequencies on grain weight cob⁻¹ (g) of shada bhutta (LSD_(0.05)= 1.31 g)

4.2.9.2 Effect of spacing

Spacing showed significant effect on grain weight cob^{-1} (g) of shada bhutta (Figure 26 and Appendix XI).From the experiment result revealed that the maximum grain weight cob^{-1} (94.57 g) was observed in S₄ treatment. Whereas the minimum grain weight cob^{-1} (74.95 g) was observed in S₁ treatment. Alam *et al.* (2020) found similar result which supported the present study.

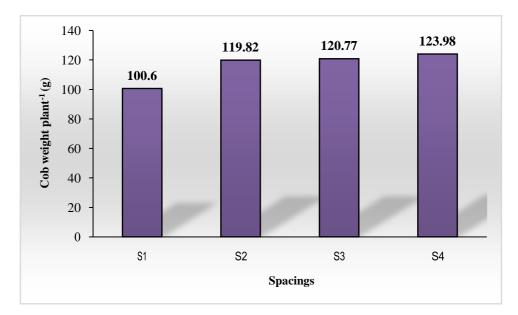

4.2.9.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of grain weight cob⁻¹ of shada bhutta (Table 7). From the experiment result exhibited that the maximum grain weight cob⁻¹ (95.78 g) was observed in I₁S₄ treatment combination which was statistically similar with I₁S₂ (94.85 g), I₁S₃ (94.82 g), I₂S₄ (94.76 g) and I₂S₂ (93.25 g) treatment combination. Whereas the minimum grain weight cob⁻¹ (74.22 g) was observed in I₃S₁ treatment combination which was statistically similar with I₂S₁ (74.33 g) and I₁S₁ (76.30 g) treatment combination.

4.2.10 Cob weight plant⁻¹ (g)

4.2.10.1 Effect of irrigation frequency

Significant variation was observed on cob weight $plant^{-1}$ (g) of shada bhutta due to irrigations frequency (Figure 27 and Appendix XI). From the experiment result revealed that the maximum cob weight $plant^{-1}$ (118.75 g) was observed in I₁ treatment. Whereas the minimum cob weight $plant^{-1}$ (113.83 g) was observed in I₃ treatment.



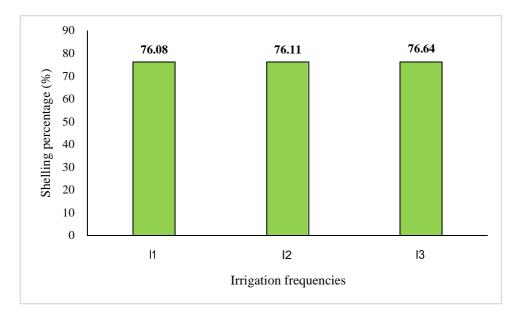
Irrigation frequencies *viz.* I_1 :Irrigation at 30 days interval, I_2 : Irrigation at 35 days interval and I_3 : Irrigation at 40 days interval

Figure 27. Effect of irrigation frequencies on cob weight plant⁻¹ (g) of shada bhutta (LSD_(0.05)= 1.77 g)

4.2.10.2 Effect of spacing

Spacing showed significant effect on cob weight plant⁻¹ (g) of shada bhutta (Figure 28 and Appendix XI).From the experiment result revealed that the maximum cob weight plant⁻¹ (123.98 g) was observed in S₄ treatment. Whereas the minimum cob weight plant⁻¹ (100.60 g) was observed in S₁ treatment. Similar findings were reported by Ukonze *et al.* (2016) and Nand (2015).

Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 28. Effect of spacings on cob weight plant⁻¹ (g) of shada bhutta (LSD(0.05)= 2.01 g)

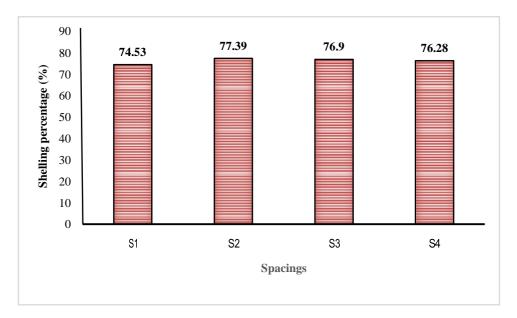

4.2.10.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of cob weight plant⁻¹ of shada bhutta (Table 7). From the experiment result exhibited that the maximum cob weight plant⁻¹ (126.68 g) was observed in I_1S_4 treatment combination which was statistically similar with I_2S_4 (123.74 g) and I_2S_2 (123.34 g) treatment combination. Whereas the minimum cob weight plant⁻¹ (98.31 g) was observed in I_3S_1 treatment combination which was statistically similar with I_2S_1 (100.66 g) treatment combination.

4.2.11 Shelling percentage (%)

4.2.11.1 Effect of irrigation frequency

Non significant variation was observed on shelling percentage (%) of shada bhutta due to irrigations frequency (Figure 29 and Appendix). From the experiment result revealed that the maximum shelling percentage (76.64 %) was observed in I₃ treatment. Whereas the minimum shelling percentage (76.08 %) was observed in I₁ treatment.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 29. Effect of irrigation frequencies on shelling percentage (%) of shada bhutta (LSD(0.05)= NS)

4.2.11.2 Effect of spacing

Spacing showed significant effect on shelling percentage (%) of shada bhutta (Figure 30 and Appendix XI).From the experiment result revealed that the maximum shelling percentage (77.39 %) was observed in S₂ treatment which was statistically similar with S₃ (76.90 %) treatment. Whereas the minimum shelling percentage (74.53 %) was observed in S₁ treatment. Ahmmed *et al.* (2018) reported that in respect of the spacing effect, the wider spacing showed highest plant shelling percentage compared to other treatments. Mukhtar *et al.* (2012) also found similar result which supported the present finding.

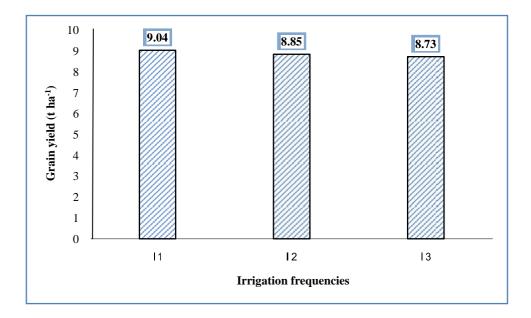
Spacings *viz.* S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 30. Effect of spacings on shelling percentage (%) of shada bhutta (LSD(0.05)= 1.03 %)

4.2.11.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of shelling percentage (%) of shada bhutta (Table 7). From the experiment result exhibited that the maximum shelling percentage (77.64 %) was observed in I_1S_2 treatment combination which was statistically similar with I_3S_2 (77.35 %), I_2S_2 (77.16 %), I_3S_3 (76.99 %), I_1S_3 (76.88 %), I_2S_3 (76.84 %) and I_2S_4 (76.66 %) treatment combination. Whereas the minimum shelling percentage (73.84 %) was observed in I_2S_1 treatment combination which was statistically similar with I_1S_1 (74.21 %) I_3S_1 (75.54 %) and I_1S_4 (75.60 %) treatment combination.

Treatments combination	Chaff weight cob ⁻¹ (g)	Shell weight cob ⁻¹ (g)	Grain weight cob ⁻¹ (g)	Cob weight plant ⁻¹ (g)	Shelling %
I_1S_1	9.90 bc	16.62 de	76.30 e	102.82 f	74.21 d
I_1S_2	10.55 bc	16.76 de	94.85 ab	122.16 b-d	77.64 a
I 1 S 3	10.78 b	17.74 bc	94.82 ab	123.34 а-с	76.88 a-c
I_1S_4	12.20 a	18.70 a	95.78 a	126.68 a	75.60 b-d
I_2S_1	9.89 bc	16.44 e	74.33 e	100.66 fg	73.84 d
I_2S_2	10.33 bc	17.25 с-е	93.25 a-c	120.83 b-d	77.16 а-с
I_2S_3	10.44 bc	17.34 cd	92.18 cd	119.96 с-е	76.84 a-c
I2S4	10.45 bc	18.53 ab	94.76 ab	123.74 ab	76.58 a-c
I3S1	9.67 c	14.43 f	74.22 e	98.31 g	75.54 cd
I_3S_2	9.78 c	16.60 de	90.10 d	116.48 e	77.35 ab
I3S3	10.22 bc	17.17 с-е	91.62 cd	119.01 de	76.99 a-c
I3S4	10.44 bc	17.92 a-c	93.17 bc	121.53 b-d	76.66 a-c
LSD(0.05)	0.90	0.89	2.56	3.48	1.76
CV(%)	5.07	3.01	1.68	1.74	1.36

Table 7: Combined effect of irrigation frequency and spacing on chaff weight cob⁻¹(g), shell weight cob⁻¹ (g), grain weight cob⁻¹(g), cob weight plant⁻¹
(g) and shelling percentage (%) of shada bhutta at harvest


In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

4.3 Yield characters

4.3.1 Grain yield (t ha⁻¹)

4.3.1.1 Effect of irrigation frequency

Grain yield (t ha⁻¹) of shada bhutta showed significant variation due to application of different irrigation frequencies (Figure 31 and Appendix XII). From the experiment result revealed that the maximum grain yield (9.04 t ha⁻¹) was observed in I₁ treatment. Whereas the minimum grain yield (8.73 t ha⁻¹) was observed in I₃ treatment. Parvizi *et al.* (2011) reported that optimum irrigation management and increasing water use efficiency increase yield of maize.

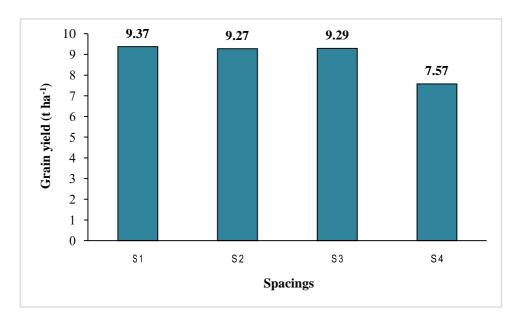

Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 31. Effect of irrigation frequencies on grain yield (t ha⁻¹) of shada bhutta (LSD_(0.05)= 0.11 t ha⁻¹)

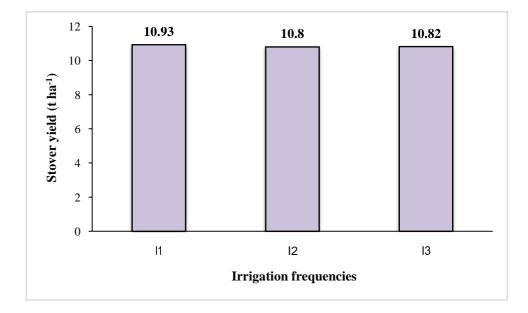
4.3.1.2 Effect of spacing

Different spacing showed significant effect on grain yield (t ha⁻¹) of shada bhutta (Figure 32 and Appendix XII).From the experiment result revealed that the maximum grain yield (9.37 t ha⁻¹) was observed in S₁ treatment which was statistically similar with S₃(9.29 t ha⁻¹) and S₂(9.27 t ha⁻¹) treatment. Whereas the minimum grain yield (7.57 t ha⁻¹) was observed in S₄ treatment. The possible reason for the lowest grain

yield at widest spacing might be due to the presence of less number of plants per unit area. Golla *et al.* (2018) and Hasan *et al.* (2018) also found similar result which supported the present finding.

Spacings *viz.* S_1 : 40 cm × 20 cm, S_2 : 40 cm ×25 cm, S_3 : 50 cm × 20 cm and S_4 : 50 cm × 25 cm. Figure 32. Effect of spacings on grain yield (t ha⁻¹) of shada bhutta (LSD_(0.05)= 0.13 t ha⁻¹)

4.3.1.3 Combined effect of irrigation frequency and spacing

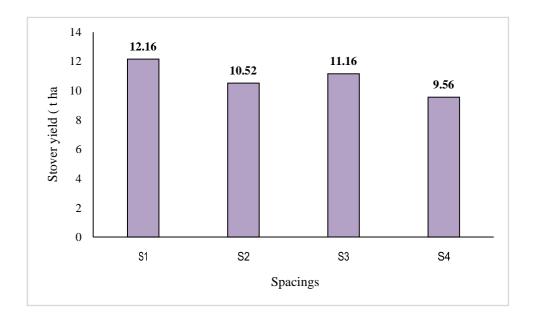

The combined effect of irrigation frequency and spacing showed significant variation in respect of grain yield (t ha⁻¹) of shada bhutta (Table 8). From the experiment result exhibited that the maximum grain yield (9.54 t ha⁻¹) was observed in I₁S₁ treatment combination which was statistically similar with I₁S₂ (9.49 t ha⁻¹),I₁S₃ (9.48 t ha⁻¹) and I₂S₂ (9.33 t ha⁻¹) treatment combination. Whereas the minimum grain yield (7.45 t ha⁻¹) was observed in I₃S₄ treatment combination which was statistically similar with I₂S₄ (7.58 t ha⁻¹) andI₁S₄ (7.66 t ha⁻¹) treatment combination.

4.3.2 Stover yield (t ha⁻¹)

4.3.2.1 Effect of irrigation frequency

Stover yield (t ha⁻¹) of shada bhutta showed non significant variation due to application of different irrigation frequencies (Figure 33 and Appendix XII). From the experiment result revealed that the maximum stover yield (10.93 t ha⁻¹) was observed

in I_1 treatment. Whereas the minimum stover yield (10.80 t ha⁻¹) was observed in I_2 treatment. Elzubeir and Mohamed (2011) reported that as irrigation intervals were prolonged, stover yield decreased. This may be due to the fact that water stress reduced dry matter accumulation of vegetative components of maize.



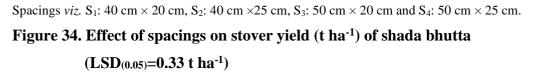
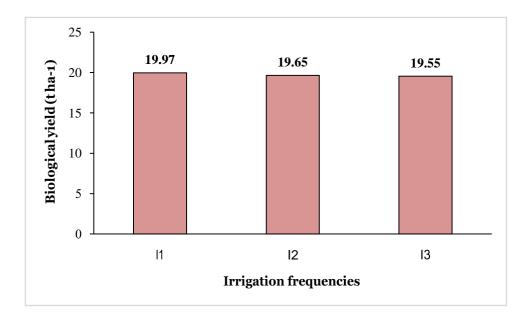

Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 33. Effect of irrigation frequencies on stover yield (t ha⁻¹) of shada bhutta (LSD_(0.05)=NS)

4.3.2.2 Effect of spacing

Different spacing showed significant effect on stover yield (t ha⁻¹) of shada bhutta (Figure 34 and Appendix XII).From the experiment result revealed that the maximum stover yield (12.16 t ha⁻¹) was observed in S₁ treatment. Whereas the minimum stover yield (9.56 t ha⁻¹) was observed in S₄ treatment. Worku and Derebe (2020) reported that stover and grain yields were significantly increased with increasing plant density, as plant density is influenced by spacing, wide spacing cause low plant density and narrow spacing cause high plant density which ultimately impact on stover and grain yield of the crop.

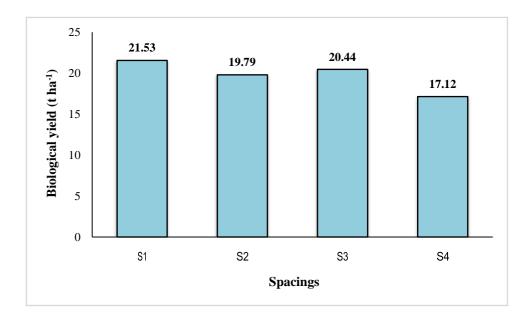

4.3.2.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of stover yield (t ha⁻¹) of shada bhutta (Table 8). From the experiment result exhibited that the maximum stover yield (12.87 t ha⁻¹) was observed in I_3S_1 treatment combination. Whereas the minimum stover yield (9.51 t ha⁻¹) was observed in I_2S_4 treatment combination which was statistically similar with I_3S_4 (9.52 t ha⁻¹), I_1S_4 (9.64 t ha⁻¹) and I_3S_2 (10.08 t ha⁻¹) treatment combination.

4.3.3 Biological yield (t ha⁻¹)

4.3.3.1 Effect of irrigation frequency

Biological yield (t ha⁻¹) of shada bhutta showed significant variation due to application of different irrigation frequencies (Figure 35 and Appendix XII). From the experiment result revealed that the maximum biological yield (19.97 t ha⁻¹) was observed in I₁ treatment which was statistically similar with I₂ (19.65 t ha⁻¹) treatment. Whereas the minimum biological yield (19.55 t ha⁻¹) was observed in I₃ treatment.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 35. Effect of irrigation frequencies on biological yield (t ha⁻¹) of shada bhutta (LSD_(0.05)=0.38 t ha⁻¹)

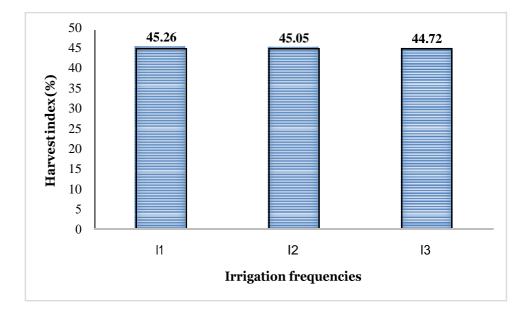
4.3.3.2 Effect of spacing

Different spacing showed significant effect on biological yield (t ha⁻¹) of shada bhutta (Figure 36 and Appendix XII).From the experiment result revealed that the maximum biological yield (21.53 t ha⁻¹) was observed in S₁ treatment. Whereas the minimum biological yield (17.12 t ha⁻¹) was observed in S₄ treatment. Result revealed that spacing influences the biological yield of the plant. Gaire *et al.* (2020) and Hossain (2015 also found similar result which supported the present finding.

Spacings viz. S_1 : 40 cm × 20 cm, S_2 : 40 cm ×25 cm, S_3 : 50 cm × 20 cm and S_4 : 50 cm × 25 cm.

Figure 36. Effect of spacings on biological yield (t ha⁻¹) of shada bhutta

(LSD(0.05)=0.39 t ha⁻¹)

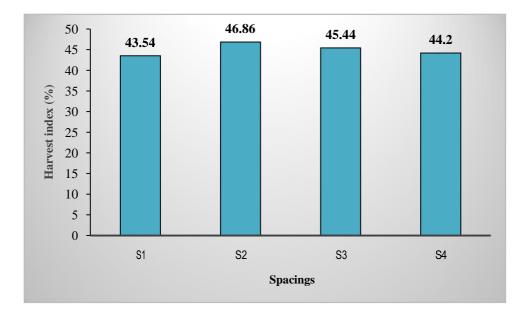

4.3.3.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of biological yield (t ha⁻¹) of shada bhutta (Table 8). From the experiment result exhibited that the maximum biological yield (22.15 t ha⁻¹) was observed in I_3S_1 treatment combination which was statistically similar with I_1S_1 (21.50 t ha⁻¹) treatment combination. Whereas the minimum biological yield (16.97 t ha⁻¹) was observed in I_3S_4 treatment combination which was statistically similar with I_2S_4 (17.10 t ha⁻¹) and I_1S_4 (17.31 t ha⁻¹) treatment combination.

4.3.4 Harvest index (%)

4.3.4.1 Effect of irrigation frequency

Harvest index (%) of shada bhutta showed non significant variation due to application of different irrigation frequencies (Figure 37 and Appendix XII). From the experiment result revealed that the maximum harvest index (45.26 %) was observed in I₁ treatment. Whereas the minimum harvest index (44.72 %) was observed in I₃ treatment.



Irrigation frequencies *viz.* I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval

Figure 37. Effect of irrigation frequencies on harvest index (%) of shada bhutta (LSD(0.05)=NS)

4.3.4.2 Effect of spacing

Different spacing showed significant effect on harvest index (%) of shada bhutta (Figure 38 and Appendix XII). From the experiment result revealed that the maximum harvest index (46.86 %) was observed in S_2 treatment. Whereas the minimum harvest index (44.20 %) was observed in S_4 treatment which was statistically similar with S_1 (43.54 %) treatment. This finding disagreed with Ahmmed *et al.* (2020) who reported that highest harvest index occur at wider spacing.

Spacings viz. S₁: 40 cm × 20 cm, S₂: 40 cm ×25 cm, S₃: 50 cm × 20 cm and S₄: 50 cm × 25 cm. Figure 38. Effect of spacings on harvest index (%) of shada bhutta (LSD(0.05)=0.70 %)

4.3.4.3 Combined effect of irrigation frequency and spacing

The combined effect of irrigation frequency and spacing showed significant variation in respect of harvest index (%) of shada bhutta (Table 8). From the experiment result exhibited that the maximum harvest index (47.20 %) was observed in I_3S_2 treatment combination which was statistically similar with I_2S_2 (46.90 %), I_1S_2 (46.48 %) and I_1S_3 (45.89 %) treatment combination. Whereas the minimum harvest index (41.89 %) was observed in I_3S_1 treatment combination.

Treatments Combination	Grain yield (t ha ⁻¹)	Stover yield (t ha ⁻¹)	Biological yield (t ha ⁻¹)	Harvest index (%)
I ₁ S ₁	9.54 a	11.96 b	21.50 ab	44.36 c
I_1S_2	9.49 ab	10.92 de	20.41 cd	46.48 ab
I_1S_3	9.48 ab	11.18 с-е	20.66 c	45.89 ab
I_1S_4	7.66 e	9.64 g	17.31 f	44.32 c
I_2S_1	9.29 bc	11.66 bc	20.95 bc	44.39 c
I_2S_2	9.33 а-с	10.56 f	19.88 d	46.90 ab
I_2S_3	9.22 cd	11.47 b-d	20.69 c	44.55 c
I_2S_4	7.58 e	9.51 g	17.10 f	44.35 c
I3S1	9.28 bc	12.87 a	22.15 a	41.89 d
I_3S_2	9.01 d	10.08 fg	19.09 e	47.20 a
I3S3	9.16 cd	10.81 e	19.97 d	45.87 b
I3S4	7.45 e	9.52 g	16.97 f	43.92 c
LSD(0.05)	0.23	0.58	0.68	1.22
CV(%)	1.53	3.10	2.0	1.58

Table 8 : Combined effect of irrigation frequencies and spacing on grain yield,stover yield, biological yield and harvest index of shada bhutta atharvest

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability. Irrigation frequencies *viz*. I₁:Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and spacings *viz*. S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm.

CHAPTER V

SUMMARY AND CONCLUSION

The present piece of work was carried out at the Research Farm of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during October 2019 to February 2020, to investigate the effect of irrigation frequencies and different spacing on the growth and yield of white maize. The experimental field belongs to the Agro-ecological zone (AEZ) of "The Modhupur Tract", AEZ-28. The soil of the experimental field belongs to the General soil type, Deep Red Brown Terrace Soils under Tejgaon soil series. The experiment consisted of two factors, and followed split plot design. Factor A: Irrigation frequencies (3); I₁: Irrigation at 30 days interval, I₂: Irrigation at 35 days interval and I₃: Irrigation at 40 days interval and Factor B: Different spacings (4); S₁: 40 cm \times 20 cm, S₂: 40 cm \times 25 cm, S₃: 50 cm \times 20 cm and S₄: 50 cm \times 25 cm. The total numbers of unit plots were 36. The size of unit plot was 3.89 m^2 ($3.17 \text{m} \times 1.23 \text{ m}$). Cow dung 5 t ha⁻¹ was used before final land preparation. The field was fertilized with nitrogen, phosphate, potash, sulphur, zinc and boron at the rate of 500-250-200- 250-15-5 kg ha⁻ ¹ of urea, triple super phosphate, muriate of potash, gypsum, zinc sulphate and boric acid, respectively (BARI, 2014). The whole amounts of fertilizers were applied as basal doses except Urea. Only one third Urea was applied as basal doses and the rest amount was applied at 15 DAS interval for three installments. Data on different yield contributing characters and yield were recorded to find out the appropriate irrigation frequency and optimum level of spacing for the highest yield of White maize.

Growth, yield and yield contributing characters were significantly influenced by different irrigation frequencies. From the experiment, result revealed that the maximum plant height (44.67 cm) at 30 DAS was observed in I₁ treatment. At 60 DAS the maximum plant height (145.83 cm) was observed in I₂ treatment. At 90 DAS and at harvest respectively the maximum plant height (185.0 and 183.41 cm) was observed in I₁ treatment, the maximum number of leaves plant⁻¹ (4.06, 5.11 and 14.97 at 30, 60 and 90 DAS) was observed in I₁ treatment. At harvest respectively the maximum number of leaves plant⁻¹ (10.06) was observed in I₂ treatment. The maximum leaf area plant⁻¹ (198.53 and 645.34 cm² at 30 and 60 DAS) was observed in I₁ treatment. At 90 DAS

in I₃ treatment. And at harvest the maximum leaf area plant⁻¹ (2298.3 cm²) was observed in I₁ treatment, the maximum dry matter plant⁻¹ (6.18 and 53.28 g at 30 and 60 DAS) was observed in I₁ treatment. At 90 DAS the maximum dry matter plant⁻¹ (161.67 g) was observed in I₂ treatment. And at harvest respectively the maximum dry matter plant⁻ ¹ (199.75 g) was observed in I₁ treatment. The maximum cob length plant⁻¹ (17.26 cm), cob circumference plant⁻¹ (14.94 cm), number of rows cob⁻¹ (14.37), number of grains row⁻¹ (27.88), number of grains cob⁻¹ (390.29), 1000 grains weight (395.83 g), chaff weight cob^{-1} (10.86 g), shell weight cob^{-1} (17.45 g), grain weight cob^{-1} (90.44 g), cob weight plant⁻¹ (118.75 g) were observed in I_1 treatment. The maximum shelling percentage (76.64 %) was observed in I₃ treatment. The maximum grain yield (9.04 t ha⁻¹), stover yield (10.93 t ha⁻¹), biological yield (19.97 t ha⁻¹) and harvest index (45.26 %) were observed in I_1 treatment. Whereas the minimum plant height (40.65, 139.23, 167.61 and 176.08 cm at 30, 60, 90 DAS and at harvest respectively) was observed in I_3 treatment. The minimum number of leaves plant⁻¹ (4.02) at 30 DAS was observed in I₃ treatment, at 60 DAS the minimum number of leaves $plant^{-1}$ (4.81) was observed in I₂ treatment, at 90 DAS and at harvest respectively the minimum number of leaves plant⁻ ¹ (14.09 and 9.59) was observed in I₃ treatment. The minimum leaf area plant⁻¹ (175.22) and 591.35 cm² at 30 and 60 DAS) was I₃ treatment. At 90 DAS the minimum leaf area plant⁻¹ (1990.8 cm²) was observed in I₂ treatment. And at harvest the minimum leaf area plant⁻¹ (2138.4 cm²) was observed in I_3 treatment. The minimum dry matter plant⁻¹ (5.41, 44.84, 136.25 and 194.99 g at 30, 60, 90 DAS and at harvest respectively) was observed in I₃ treatment. The minimum number of rows cob⁻¹ (13.45), number of grains row⁻¹ (27.64), number of grains cob^{-1} (373.95), were observed in I₃ treatment. The minimum 1000 grains weight (375.83) was observed in I₂ treatment. The minimum chaff weight cob^{-1} (10.03 g), shell weight cob^{-1} (16.53 g), grain weight cob^{-1} (87.28 g), cob weight plant⁻¹ (113.83 g) were observed in I₃ treatment. The minimum shelling percentage (76.08 %) was observed in I_1 treatment. The minimum grain yield (8.73 t ha^{-1}) was observed in I₃ treatment. The minimum stover yield (10.80 t ha^{-1}) was observed in I₂ treatment. The minimum biological yield (19.55 t ha^{-1}) and harvest index (44.72 %) were observed in I₃ treatment.

Different spacing significantly effect on growth, yield and yield contributing characters of white maize. From the experiment, result revealed that, the maximum plant height (43.66 and 143.96 cm) at 30 and 60 DAS was observed in S₃ treatment. At 90 DAS and at harvest respectively the maximum plant height (180.42 and 187.16 cm) was observed in S₄ treatment. The maximum number of leaves plant⁻¹ of shada bhutta (4.18, 5.26, 15.33 and 10.22 at 30, 60, 90 DAS and at harvest respectively),

leaf area plant⁻¹ (227.78, 651.10, 2170.3 and 2431.1 cm² at 30, 60, 90 DAS and at harvest respectively) were observed in S₄ treatment. The maximum dry matter weight plant⁻¹ (6.45 g at 30 DAS) was observed in S₁ treatment. At 60 DAS the maximum dry matter weight plant⁻¹ (53.90 g) was observed in S₂ treatment. At 90 DAS the maximum dry matter weight plant⁻¹ (172.34 g) was observed in S₃ treatment and finally at harvest the maximum dry matter weight plant⁻¹ (17.26 cm), cob circumference plant⁻¹ (15.44 cm), number of rows cob⁻¹ (14.52), number of grains row⁻¹ (28.40), 1000 grains weight (396.67 g), chaff weight cob⁻¹ (11.03 g), shell weight cob⁻¹ (18.38 g), grain weight cob⁻¹ (94.57 g), cob weight plant⁻¹ (123.98 g) were observed in S₄ treatment. The maximum grain yield (9.37 t ha⁻¹), stover yield (12.16 t ha⁻¹ and biological yield (21.53 t ha⁻¹) were observed in S₁ treatment. The maximum harvest index (46.86 %) was observed in S₂ treatment.

173.88 and 173.27 cm at 30, 60 90 DAS and at harvest respectively) was observed in S₁ treatment. The minimum number of leaves plant⁻¹ of shada bhutta (3.80 and 4.78 at 30 and 60 DAS) was observed in S₂ treatment, at 90 DAS the minimum number of leaves plant⁻¹ of shada bhutta (13.74) was observed in S₁ treatment and at harvest respectively the minimum number of leaves plant⁻¹ of shada bhutta (9.56) was observed in S₃ treatment. The minimum leaf area plant⁻¹ (162.78, 568.20, 1894.0 and 2004.4 cm² at 30, 60, 90 DAS and at harvest respectively) was observed in S₃ treatment. The minimum dry matter weight plant⁻¹ (5.35 g at 30 DAS) was observed in S₃ treatment. The minimum dry matter weight plant⁻¹ (45.76, 134.67 and 172.26 g) was observed in S₁ treatment. The minimum cob length plant⁻¹ (15.42 cm), cob circumference plant⁻¹ (14.17 cm), number of rows cob⁻¹ (13.07), number of grains row⁻¹ (26.60), number of grains cob⁻¹ (351.28), 1000 grains weight (372.22 g), chaff weight cob⁻¹ (9.82 g), shell weight cob⁻

¹ (15.83 g), grain weight cob⁻¹ (74.95 g) and shelling percentage (74.53 %) were

observed in S_1 treatment. The minimum grain yield (7.57 t ha⁻¹), stover yield (9.56 t ha⁻¹), biological yield (17.12 t ha⁻¹) and harvest index (44.20 %) were observed in S_4 treatment.

Combined effect of irrigation frequency and different spacing showed significant effect on growth, yield and yield contributing characters of white maize. From the experiment, result revealed that the maximum plant height (45.75 cm) at 30 DAS was observed in I_1S_3 treatment combination. At 60 DAS the maximum plant height (149.23 cm) was observed in I_2S_4 treatment combination. At 90 DAS and at harvest respectively the maximum plant height (187.47 and 192.10 cm) was observed in I_1S_4 treatment combination .The maximum number of leaves plant⁻¹ of shada bhutta (4.37 at 30 DAS) was observed in I_2S_1 treatment combination. At 60, 90 DAS and at harvest respectively the maximum number of leaves plant⁻¹ of shada bhutta (5.55,

16.11 and 10.44) was observed in I_1S_4 treatment. The maximum leaf area plant⁻¹ (252.81, 716.24, 2387.5 and 2760.1 cm² at 30, 60, 90 DAS and at harvest respectively) was observed in I_1S_4 treatment combination. The maximum dry matter weight plant⁻¹ (7.92 g at 30 DAS) was observed in I_2S_1 treatment combination At 60 DAS the maximum dry matter weight plant⁻¹ (57.28 g) was observed in I₃S₁ treatment combination. At 90 DAS the maximum dry matter weight plant⁻¹ (177.10 g) was observed in I₁S₃ treatment combination. And at harvest respectively the maximum dry matter weight plant⁻¹ (216.31 g) was observed in I_1S_4 treatment combination. The maximum cob length plant⁻¹ (18.12 cm), cob circumference plant⁻¹ (15.81 cm), number of rows cob^{-1} (15.67), number of grains row⁻¹ (28.66), number of grains cob^{-1} (419.22), 1000 grains weight (413.33 g), chaff weight cob^{-1} (12.20 g), shell weight cob^{-1} (18.70 g), grain weight cob⁻¹ (95.78 g), cob weight plant⁻¹ (126.68 g) were observed in I_1S_4 treatment combination. The maximum shelling percentage (77.64 %) was observed in I_1S_2 treatment combination. The maximum grain yield (9.54 tha⁻¹) was observed in I_1S_1 treatment combination. The maximum stover yield (12.87 t ha⁻¹) was observed in I_3S_1 treatment combination. the maximum biological yield (22.15 t ha⁻¹) was observed in I_3S_1 treatment combination, and the maximum harvest index (47.20 %) was observed in I_3S_2 treatment combination. Whereas the minimum plant height (38.33 cm) at 30 DAS was observed in I_3S_2 treatment combination .At 60, 90 DAS and at harvest respectively the minimum plant height (128.01, 159.47 and 171.97 cm) was observed in I_3S_1 treatment combination. The minimum number of

leaves plant⁻¹ of shada bhutta (3.77 at 30 DAS) was observed in I₁S₂ treatment combination. At 60 DAS the minimum number of leaves $plant^{-1}$ of shada bhutta (4.56) was observed in I₂S₂ treatment combination. At 90 DAS the minimum number of leaves $plant^{\text{-}1}$ of shada bhutta (13.67) was observed in I_3S_1 treatment combination. And at harvest respectively the minimum number of leaves plant⁻¹ of shada bhutta (9.44) was observed in I₃S₃ treatment combination. Whereas the minimum leaf area plant⁻¹ (177.32 cm^2 at 30 DAS) was observed in I₁S₂ treatment combination. At 60, 90 DAS and at harvest respectively the minimum leaf area plant⁻¹ (540.27, 1800.9 and 1915.1 cm²) was observed in I_3S_1 treatment combination. The minimum dry matter weight plant⁻¹(3.51 g at 30 DAS) was observed in I₃S₁ treatment combination. At 60 and 90 DAS the minimum dry matter weight plant⁻¹ (35.43 and 121.50 g) was observed in I_3S_2 treatment combination. And at harvest respectively the minimum dry matter weight plant⁻¹ (167.59 g) was observed in I_2S_1 treatment combination. The minimum cob length plant⁻ ¹ (14.90 cm) was observed in I_2S_1 treatment combination, the minimum cob circumference plant⁻¹ (13.87 cm) was observed in I_3S_1 treatment. The minimum number of rows cob^{-1} (13.00), number of grains row⁻¹ (26.34), number of grains cob^{-1} (341.75), 1000 grains weight (363.33 g), chaff weight cob^{-1} (9.67 g), shell weight cob^{-1} (14.43 g), grain weight cob^{-1} (74.22 g), grain weight cob^{-1} (98.31 g) were observed in I_3S_1 treatment combination. The minimum shelling percentage (73.84 %) was observed in I_2S_1 treatment combination. The minimum grain yield (7.45 t ha⁻¹) was observed in I_3S_4 treatment combination. The minimum stover yield (9.51 t ha⁻¹) was observed in I_2S_4 treatment combination. The minimum biological yield (16.97 t ha⁻¹) was observed in I₃S₄ treatment combination and the minimum harvest index (41.89 %) was observed in I₃S₁ treatment combination.

CONCLUSION

Based on the above results of the present study, the following conclusions may be drawn-

- i. Maximum value of growth, yield and yield contributing characters were observed in I_1 treatment (irrigation interval at 30 DAS) compared to other treatments.
- ii. Maximum grain yield (9.37 t ha⁻¹), stover yield (12.16 t ha⁻¹) and biological yield (21.53 t ha⁻¹) were observed in S₁ treatment (40 cm \times 20 cm) compared to other treatments due to the reason that close spacing reducing yield production plant⁻¹ but increasing unit area yield production.
- iii. I₁ treatment (irrigation interval at 30 DAS) along with S₁ treatment (40 cm \times 20 cm) i.e. I₁S₁ treatment combination perform best in terms of maximum grain yield (9.54 t ha⁻¹) production compared to others treatment combinations.

Thus for the cultivation of "SAU shada bhutta", 30 days irrigation interval (I₁) along with (40 \times 20 cm) (S₁) spacing can be used as recommended treatment for the production of highest grain yield in the AEZ 28 (Agro-ecological zone) soils of Bangladesh.

Recommendations

Studies of similar nature could be carried out in different Agro Ecological Zones (AEZ) in different seasons of Bangladesh for the evaluation of zonal adaptability.

REFERENCES

- Abd El-Halim, A. and Abd El-Razek, U. (2013). Effect of different irrigation intervals on water saving, water productivity and grain yield of maize (Zea mays L.) under the double ridge-furrow planting technique.*Archives. Agron. Soil Sci.* Pp. 1-10.
- Ahmad, I., Wajid, S. A., Ahmad, A., Cheema, M. J. M. and Judge, J. (2019). Optimizing irrigation and nitrogen requirements for maize through empirical modeling in semiarid environment. *Environ. Sci. Pollut. Res. Int.* 26(2): 1227-1237.
- Ahmmed, T., Ullah, M. J., Mannan, M. A. and Akter, M. S. (2020). Performance of White Maize under Different Spacing and Integrated Fertilizer Management. *Asian Plant Res. J.* 6(2): 23-32. https://doi.org/10.9734/aprj/2020/v6i230124
- Akbar, M. A., Siddique, M. A., Marma, M. S., Rahman, M. M., Molla, M. R. I., Rahman, M.M., Ullah. M.J., Hossain, M.A. and Hamid, A. 2016. Planting Arrangement, Population Density and Fertilizer Application Ratefor White Maize (ZeamaysL.) Production in Bandarban Valley. J. Agric. Forest. Fisher. 5(6): 215-224. http:// doi:10.11648/j.aff.20160506.12
- Alam, M. J., Uddin, M. A., Nahar, M. K., Ali, M. Y. and Ahmed, K. S. (2020). Enhancement Of Maize Productivity Through Using Improveed Techniqes Of Spacing. J. Expt. Biosci. 11(2): 27-34.
- Anonymous, (1989). Annual Weather Report, meteorological Station, Dhaka, Bangladesh.

Anonymous. (1988 a). The Year Book of Production. FAO, Rome, Italy.

Anonymous. (1988 b). Land resources appraisal of Bangladesh for agricultural development. Report No.2. Agro-ecological regions of Bangladesh, UNDP and FAO. pp. 472–496.

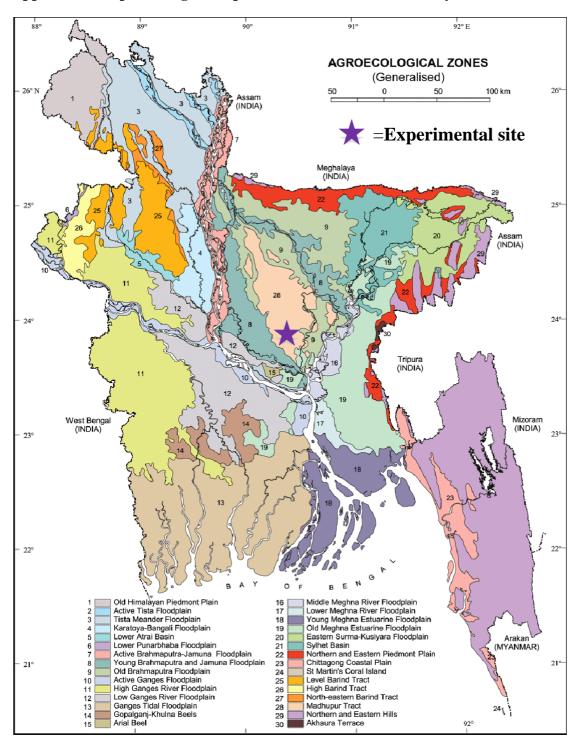
- Anonymous. (2004). Effect of seedling throwing on the grain yield of wart landrice compared to other planting methods. Crop Soil Water Management Program Agronomy Division, BRRI, Gazipur-1710.
- Azam, M. (2017). Production potential of various maize (zea mays l.) hybrids under different intra-row plant spacing. *Pakistan J. Agric. Sci.* 54(1): 117-121.
- Baloch, S. K. Yang, Y., Baloch, S. S. and Bashir, W. (2014). The Effect of Different Irrigation Regimes on the Yield of Fodder Maize (Zea Mays). J. Nat. Sci. Res. 4(20). 57-63.
- Banglapedia.(2014). National Encyclopedia of Bangladesh. http://en.banglapedia.org/index.php.title=Agroecological_Zone.
- BARI (Bangladesh Agricultural Research Institute). (2014). "Krishi Projukti Hathboi".Bangladesh Agricultural Research Institute, Joydebpur, Gazipur. p. 54.
- BBS (Bangladesh Bureau of Statistics). (2016). Yearbook of Agricultural Statistics2014. Ministry of Planning, Government of Bangladesh, Dhaka.
- Belay, M. K. (2019) Effect of Inter and Intra Row Spacing on Growth, Yield Components and Yield of Hybrid Maize (Zea mays L.) Varieties at Haramaya, Eastern Ethiopia. American J. Plant Sci. 10: 1548-1564.
- Biswas, J. C., Maniruzzaman, M., Nahar, U. A., Zahan, T., Haque, M. M., Ali, MH., Kabir, N. K. and Rahnamayan, S. (2019). Prospect of Developing Soil Health Index in Bangladesh. *Curr. Inves. Agri. Curr. Res*. 6(2): 799-807.
- Bithy, P. A. and Ahamed, K. U. (2018). Varietal effect on growth, yield and yield contributing parameters of white maize (zea mays). *J. Expt. Biosci.* **9**(2): 1-6.
- Chowdhury, M. K. and Islam, M. A. (1993). Production and use of maize On-Farm Research Division, Bangladesh Agricultural Research Institute. Joydebpur, Gazipur, Bangladesh. Pp. 8–57.

- Dahmardeh, M. (2011). Economical and biological yield of corn (*Zea mays* L.) as affected by nitrogen fertilization under different irrigation interstices. *J. Food Agr. Environ.* **9**: 472–474.
- Davi, C. M., Reddy, B. R., Reddy, P. M. and Reddy S. C. S. (1995). Effects on Nitrogen levels and plant density on yield and quality of JKHY-1 cotton. *Current Agric*. *Res. J.* 8(3/4): 144-146.
- Edris, K. M., Islam, A. M. T., Chowdhury, M. S. and Haque, A. K. M. M. (1979). Detailed Soil Survey of Bangladesh, Dept. Soil Survey, BAU and Govt. Peoples Republic of Bangladesh. p 118.
- Elzubeir, A. and Mohamed, A. (2011). Irrigation scheduling for maize (Zea mays L.) under desert area conditions- North of Sudan. *Agric. Bio. J. North America*. 2(4): 645-651.
- Enujeke, E. C. (2013 a). Effects of variety and spacing on growth characters of Eyasu,
 E., Shanka, D., Dalga, D. and Elias, E. (2018). Yield response of maize (Zea mays L.) varieties to row spacing under irrigation at Geleko, Ofa Woreda, Wolaita Zone, Southern Ethiopia. J. Expt. Agric. Int. 20(1): 1–10.
- Eyasu, E., Shanka, D., Dalga, D. and Elias, E. (2018). Yield response of maize (Zea mays L.) varieties to row spacing under irrigation at Geleko, Ofa Woreda, Wolaita Zone, Southern Ethiopia. J. Expt. Agric. Int. 20(1): 1–10.
- FAO (Food and Agricultural Organization of the United Nations). (2002). Fertilizer and the future. IFA/FAO Agriculture Conference on Global food security and the role of Sustainability Fertilization. Rome, Italy. 16th–20th March 2003. pp. 1–2.
- FAO (Food and Agricultural Organization of the United Nations). (2019). Production Statistics-Crops, Crops Processed. FAOSTAT Annual Publication. 18 January 2019.

- Fatima, K., Biswas, M. M., Mahmud, M. S., Ullah, M. J. and Rahman, J. (2019). Comparing yield performance of CIMMYT"s white maize lines with other exotic and inland genotypes in different agro ecological zones of Bangladesh. *J. Expt. Biosci.* 10(2):73-86.
- Filintas, Ag., Dioudis, P., Pateras, D., Koutseris, E., Hatzopoulos, J. and Toulios, L. (2007). Irrigation water and applied nitrogensfertilizer effects in soils nitrogen depletion and nitrates GISmapping.Paper presented at the Proc. of First International Conference on Environmental Management, Engineering, Planning and Economics CEMEPE/SECOTOX.
- Gaire, R., Pant, C., Sapkota, N., Dhamaniya, R. and Bhusal, T. (2020). Effect of Spacing and Nitrogen Level on Growth and Yield of Maize (Zea mays L.) in Mid hill of Nepal. *Malays. J. Halal Res.* 3(2): 50-55.
- Getaneh, L., Belete, K. and Tana, T. (2016). Growth and Productivity of Maize (Zea mays L.) as Influenced by Inter- and Intra-Row Spacing in Kombolcha, Eastern Ethiopia. J. Bio. Agric. Health. 6(13): 90-101.
- Gomez, M. A. and Gomez, A. A. (1984). Statistical procedures for Agricultural Research. John Wiley and sons. New York, Chichester, Brisbane, Toronto. Pp. 97–129, 207–215.
- Guo, B. Y., Gao, H., Tang, C., Liu, T. and Chu, G. X. (2015). Response of water coupling with N supply on maize nitrogen uptake, water and N use efficiency, and yield in drip irrigation condition. *Ying Yong Sheng Tai Xue Bao.* 26(12): 3679-3686.
- Hailare, L. (2000). Corn: An American Native. Spanning the Gap The newsletter of Delaware Water Gap National Recreation Area Vol. 22 No. 1 Spring, 2000.U.S. Dept. of the Interior National Park Service.
- Hamid, A., Akbar, M. A., Marma, M. S., Islam, M. M., Ullah, M. J., MollahM. A.
 M. and Neogi, M. G. (2019). Spatiotemporal Variations in Temperature Accumulation, Phenological Development and Grain Yield of Maize (*Zea mays* L.) in Bangladesh. J. Agric. Sci. 12(1): 46-57.

- Hasan, M. R., Rahman, M. R., Hasan, A. K., Paul, S. K. and Alam, A. H. M. J. (2018).
 Effect of variety and spacing on the yield performance of maize (Zea mays L.) in old Brahmaputra floodplain area of Bangladesh. *Arch. Agric. Environ. Sci.* 3(3): 270–274.
- Heydari, Nader. 2014. Water productivity in agriculture: challenges in concepts, terms and values. *Irrigation and drainage*. **63**(1). 22-28.
- Hossain, M. A. (2015). Effect of planting configuration on the growth and yield of white maize. M.S. Thesis, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka–1207, Bangladesh. hybrid maize. *Asian J. Agric. Rural Dev.* 3(5): 296–310.
- Ibrahim, S. and Hala Kandil. 2007. Growth, yield and chemical constituents of corn (Zea Maize L.) as affected by nitrogen and phosphors fertilization under different irrigation intervals. J. Appl. Sci. Res. 3: 1112–1120.
- Islam, M. S., Ullah, M.J., Sultana, N., Runia, M. J. and Hasan, N. (2020b). Effect of alternate furrow irrigation and different fertilizer management on the yield performance of baby corn. J. Expt. Biosci. 11(1):35-42.
- Islam, M. S., Ullah, M. J., Sultana, N., Runia, M. J. and Shithi, N. (2020a). Plant traits of baby corn as influenced by alternate furrow irrigation and different fertilizer managements. J. Expt. Biosci. 11(1):25-34.
- Jaliya, A. M., Falaki, A. M., Mahmud, M. and Sani, Y. A. (2008). Effects of sowing date and NPK fertilizer rate on yield and yield components of quality protein maize (*Zea mays L.*). ARPN J. Agric. Biol. Sci. 2: 23–29.
- Jula, L. S. W., Joseph, T., Zamani, D. L. and Ayodeji, O. D. (2013). Evaluation of the effects of intra-row spacing on the growth and yield of maize (Zeamays L.) in maize-ginger intercrop in samaru, northern guinea savanna of Nigeria. *Agric. Biol. J. N. Amer.* 4(3): 175–180.

- Kandil, E. E. (2013). Response of Some Maize Hybrids (Zea mays L.) to Different Levels of Nitrogenous Fertilization. J. App. Sci. Res. 9(3): 1902–1908.
- Keulen, A. O. and Wolf, K. D. F. (1986). Production potential and nitrogen-use efficiency of sweetcorn (Zea mays) as influenced by different planting densities andnitrogen levels. *Indian J. Agril. Sci.* **79**: 351–355.
- Koirala, S., Dhakal, A., Niraula, D., Bartaula, S., Panthi, U., and Mahato, M. (2020).
 Effects of row spacings and varieties on grain yield and economics of maize. *J. Agric. Nat. Resour.* 3(1): 209-218.
- Lawson, H. M., & Topham, P. B. (1985). Competition between annual weeds and vining peas grown at a range of population densities: Effects on the weeds. *Weed Res. J.* 25: 221-229.
- Luque, S. F., Cirilo, A. G., & Otegui, M. E. (2006). Genetic gains in grain yield and related physiological attributes in Argentine maize hybrids. *Field Crop Res.* 95: 383-397.
- Mannan, M. A.; Ullah, M. J., Biswas, M. M. I., Ahmed, T. and Akter, M. S. A. (2019). Varietal performance of white maize as influenced by different weed management practices. *J. Expt. Biosci.* 10(1):67-78.
- Mechi, K. (2015). Effect of nitrogen rates and inter row spacing on growth, yield and yield components of maize (Zea mays L.) at Nejo, Western Ethiopia. M.Sc. Thesis, Haramaya University, Dire Dawa, Ethiopia.
- Mintesinot, B., Verplancke, H., Van Ranst, Eric. and Mitiku, H. (2004). Examining traditional irrigation methods, irrigation scheduling and alternate furrows irrigation on vertisols in northern Ethiopia. Agricultural Water Management. 64(1): 17-27.
- Molden., David., Oweis., Theib., Steduto., Pasquale., Bindraban., Prem., Hanjra.,
 Munir, A. and Kijne, J. (2010). Improving agricultural water productivity:
 Between optimism and caution. *Agric. Water Management.* 97(4): 528-535.


- Mondal, M. R. I., M. K. Sultan, S. Nur, M. J. U. Sarkar, M. S. Alam and M. H. H. Rahman. (2014). KRISHI PROJUKTI HATBOI (Handbook on Agrotechnology), 6 th edition. Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh.
- Mukhtar, T., Arif, M., Hussain, S., Atif, M., Rehman, S. and Hussain, K. (2012). Yield and yield components of maize hybrids as influenced by plant spacing. *J. Agric. Res.* 50(1): 59-69.
- Nand, V. (2015). Effect of spacing and fertility levels on protein content and yield of hybrid and composite maize (Zea mays L.) grown in Rabi season. J. Agric. Vet. Sci. 8(9): 26–31.
- Nasim, W., Ahmad, A., Khaliq, T., Wajid, A., Munis, M. F. H., Chaudhry, H. J., and Hammad, H. M. (2012). Effect of organic and inorganic fertilizer on maize hybrids under agro-environmental conditions of Faisalabad-Pakistan. *African J. Agric. Res.* 7(17): 2713–2719.
- Parvizi, Y., Ghaitori, M., Nazari, K. and Vahedi, M. 2011. Evaluation the effects of organic fertilizer and irrigation interval on water need, water use efficiency, and quality and quantity of maize yield. ICID 21st International Congress on Irrigation and Drainage, 2011 Oct 15–23; Tehran, R.56.4/ Poster/12.
- Poehlman, J. M. and Sleper, D. A. (1995). Breeding Field Crops. Fourth Ed. IowaState University Press, Ames, USA.
- Rahman, M., Paul, S., and Rahman, M. (2016). Effects of spacing and nitrogen levels on yield and yield contributing characters of maize. *J. Bangladesh Agril. Univ.* 14(1): 43–48.
- Ranu S. A. and Ahamed, K. U. (2018). Effect of indigenous and artificial mulches on yield attributes and yield of white maize (Zea mays L.). *Intl. J. Biosci.* 12(6): 282:298.

- Ray, D. K., Mueller, N. D., West, P. C. and Foley, J. A. (2013). Yield trends are insufficient to double global crop production by 2050. *Plos One*. 8(6): 1–4.
- Salam, M. A., Sarder, M. S. A., Ullah, M. J., Kawochar, M.A., and Islam, M.K. (2010). Effect of different spacing and levels of nitrogen fertilizer on the yield attributes and yield of hybrid maize. *J. Expt. Biosci.* 1(2): 57-62.
- Sangoi, L. (2001). Understanding plant density effects on maize growth and development: An important issue to maximize grain yield. *Ciencia Rural*. **31**(1): 159-168.
- Seckler, David William. 1998. World water demand and supply, 1990 to 2025: *Scenarios and issues.* **19**(1): 1-39.
- Shen, D., Zhang, G., Xie, R., Ming, B., Hou, P., Xue, J., Li, S. and Wang, K. (2020). Improvement in Photosynthetic Rate and Grain Yield in Super-High-Yield Maize (Zea mays L.) by Optimizing Irrigation Interval under Mulch Drip Irrigation. *Agronomy*. **10**(11): 1778.
- Shompa, B. N., Fatima, K., Jony, M., Sarker, S., Ullah, M. J., Chowdhury, A. K. and Rahman, J. 2020. Selection of dwarf stature yield potential lines from F3 populations of white maize (*Zea mays* L.). *J. Genet. Resour.* 6(2): 95-105. doi: 10.22080/jgr.2020.18610.1181
- Taiz, L. and Zeiger, E. (2009). Fisiologia vegetal. 4th edition. Artmed Porto Alegre. Brasil. pp. 819.
- Tefera, A. H. (2020).Optimization of irrigation scheduling and nitrogen rate of maize to improve yield and water use efficiency under irrigated agriculture. *Int. J. Cur. Res.* 12(11): 14802-14808.
- Timsina, J., Jat, M. L. and Majumdar, K. (2010). Rice-maize systems of South Asia: current status, future prospects and research priorities for nutrient management. *Plant Soil.* 335: 65–82.

- Ukonze, J. A., Akor, V. O. and Ndubuaku, U. M. (2016). Comparative analysis of three different spacing on the performance and yield of late maize cultivation in Etche local government area of Rivers State, Nigeria. *Afr. J. Agric. Res.* **11**(13): 1187– 1193.
- Ullah, M. J., Islam, M. M., Fatima, K., Mahmud, M.S. and Rahman, J. (2016). Evaluating yield and yield performance of transplanted white maize varieties under varying planting geometry. J. Expt. Biosci. 7(2): 21-30.
- Ullah, M. J, Islam, M. M., Fatima, K., Mahmud, M. S., Akhter, S., Rahman, J. and Quamruzzaman, M. M. (2017a). Comparing modern varieties of white maize with land races in Bangladesh: phenotypic traits and plant characters. *J. Expt. Biosci.* 8(1): 27–40.
- Ullah M. J., Islam, M. M, Fatima, K., Mahmud, S., Rahman, J. and Akhter, S. (2017b). Comparing modern varieties of white maize with local races: ear characters. *J. Expt. Biosci.* 8(2): 49-58.
- Ullah M. J., Islam, M. M, Fatima, K., Mahmud, S. and Mannan, M. A. (2018a). Performance of two exotic white maize hybrids as influenced by varying soil moisture regimes during seedling transplantation. *J. Expt. Biosci.* 9(2): 59-70.
- Ullah M. J., Islam, M. M., Fatima, K., Mahmud, M. S. and Islam, R. I. (2018b). Yield and yield attributes of two exotic white maize hybrids at different agro climatic regions of Bangladesh under varying fertilizer doses. *Adv. Agric. Environ. Sci.* 2(2): 65-71. DOI: 10.30881/aaeoa.00024
- Ullah M. J., Islam, M. M., Fatima, K., Mahmud, M. S. and Islam, R. I. (2018c). Yield and yield attributes of two exotic white maize hybrids at different agro climatic regions of Bangladesh under varying fertilizer doses. *Adv. Agric. Environ. Sci.* 2(2): 65-71. DOI: 10.30881/aaeoa.00024
- Ullah, M. J., Linu, S. B .B., Islam, M. M., Fatima, K. and Mahmud, M. S. (2019). Irrigation water management through using polyethylene mulch material. *Adv Agr Environ Sci.* 2(2): 74-83. DOI: 10.30881/aaeoa.00024

- Worku, A. and Derebe, B. (2020). Response of maize (Zea mays L.) to nitrogen and planting density in Jabitahinan district, Western Amhara region. Cogent Food Agric. Soil Crop Sci. 6: 1-14.
- Zamir, M. S. I., Yasin, G., Javeed, H. M. R., Ahmad, A. U. H., Tanveer, A. andYaseen, M. (2013). Effect of different sowing techniques and mulcheson the growth and yield behavior of spring planted maize (*Zea mays* L.). *Cercetări Agronomice în Moldova*. 153(1): 77–82.

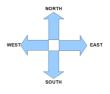
APPENDICES

Appendix I. Map showing the experimental location under study

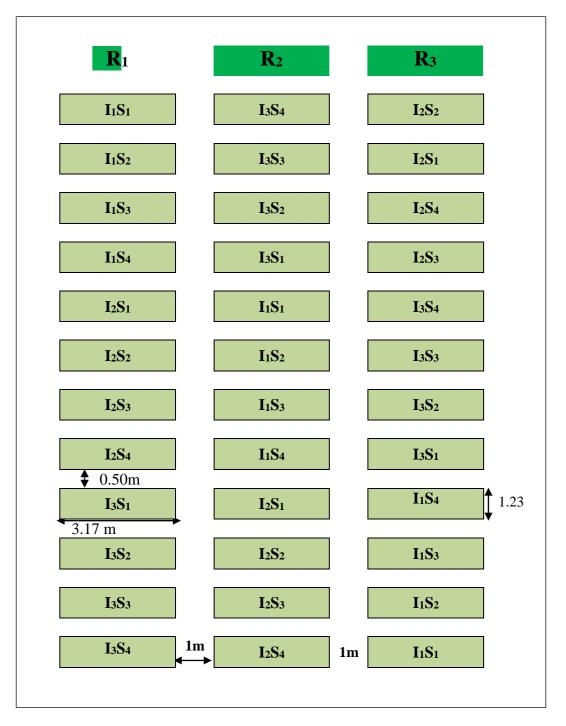
Appendix II. Monthly meteorological information during the period from October, 2019 to March, 2020.

		Air temperatu	ure (^{0}C)	Relative humidity	Total
Year	Month	Maximum Minimum		(%)	rainfall (mm)
	October	31.2	23.9	76	52
2019	November	29.6	19.8	53	00
	December	28.8	19.1	47	00
	January	25.5	13.1	41	00
2020	February	25.9	14	34	7.7
	March	31.9	20.1	38	71

Source: Metrological Centre, Agargaon, Dhaka (Climate Division)


Appendix III. Soil Characteristics of the experimental field

Morphological features	Characteristics
Location	Sher-e-Bangla Agricultural University
	Agronomy research field, Dhaka
AEZ	AEZ-28, Modhupur Tract
General Soil Type	Shallow Red Brown Terrace Soil
Land type	High land
Soil series	Tejgaon
Topography	Fairly leveled


A. Morphological characteristics of the experimental field

B. The initial physical and chemical characteristics of soil of the experimental site (0 - 15 cm depth)

Physical characteristics	
Constituents	Percent
Sand	26 %
Silt	45%
Clay	29%
Textural class	Silty clay
Chemical characteristics	
Soil characteristics	Value
рН	5.6
Organic carbon (%)	0.45
Organic matter (%)	0.78
Total nitrogen (%)	0.03
Available P (ppm)	20.54
Exchangeable K (mg/100 g soil)	0.10

Appendix IV. Layout of the experimental field

LEGENDS

R: Replication, **I**₁: Irrigation at 30 days interval, **I**₂: Irrigation at 35 days interval, **I**₃: Irrigation at 40 days interval and spacing **S**₁: 40 cm × 20 cm, **S**₂: 40 cm × 25 cm, **S**₃: 50 cm × 20 cm, and **S**₄: 50 cm × 25 cm

Source of variation	DF	Mean square value of plant height (cm) of shada bhutta at						
		30 DAS						
Replication	2	0.58	19.00	8.53	1.00			
Irrigation frequencies (A)	2	48.35*	152.72*	961.55*	176.58*			
Error	4	2.46	21.50	27.65	5.00			
Spacing (B)	3	11.56*	96.38*	66.72*	317.05*			
$(\mathbf{A} \times \mathbf{B})$	6	4.98*	119.65*	35.17*	14.19*			
Error	18	1.83	26.52	11.94	4.41			
Total	35							

Appendix V. Analysis of variance of the data of plant height of shada bhutta at different DAS

*: Significant at 0.05 level of probability

Appendix VI. Analysis of variance of the data of number of leaves of shada bhutta at different DAS

Source of variation	DF	Mean square value of number of leaves of shada bhutta at					
		30 DAS	60 DAS	90 DAS	At harvest		
Replication	2	0.0036	0.01	0.08	0.08		
Irrigation frequencies (A)	2	0.01 ^{NS}	0.34*	2.47*	0.66 ^{NS}		
Error	4	0.011	0.02	0.21	0.21		
Spacing (B)	3	0.23*	0.37*	4.05*	0.85*		
$(\mathbf{A} \times \mathbf{B})$	6	0.11*	0.11* 0.12* 0		0.15*		
Error	18	0.01	0.02	0.16	0.17		
Total	35						

*: Significant at 0.05 level of probability NS: Non significant

Source of variation	DF	Mean square value of plant leaf area of shada				
		bhutta at				
		30 DAS	30 DAS 60 DAS 90 DAS			
Replication	2	6.33	633.3	2500	3333	
Irrigation frequencies (A)	2	2163.51*	10528.4*	28779*	80958*	
Error	4	13.83	1133.3	5000	8333	
Spacing (B)	3	6611.16*	6611.16* 17698.9* 12438		274986*	
$(\mathbf{A} \times \mathbf{B})$	6	5655.45*	5655.45* 2983.2*		133064*	
Error	18	11.33	11.33 966.7		6667	
Total	35					

Appendix VII. Analysis of variance of the data of plant leaf area of shada bhutta at different DAS

*: Significant at 0.05 level of probability

Appendix VIII . Analysis of variance of the data of dry matter weight of shada bhutta at different DAS

Source of variation	DF	Mean square value of dry matter weight of shada bhutta at				
		30 DAS	60 DAS	90 DAS	At harvest	
Replication	2	0.36	15.55	102.74	29.78	
Irrigation frequencies (A)	2	2.36*	258.28*	2049.90*	69.59*	
Error	4	0.25	14.86	98.74	15.44	
Spacing (B)	3	1.82*	106.45*	2485.00*	2874.61*	
$(\mathbf{A} \times \mathbf{B})$	6	9.64* 97.68* 696.82* 6		65.03*		
Error	18	0.28 15.09 100.07		20.22		
Total	35					

*: Significant at 0.05 level of probability

Appendix IX. Analysis of variance of the data of yield contributing characters						
of shada bhutta						
Source of variation DE Maan genere value of vield contributing						

Source of variation	DF	Mean square value of yield contributing characters of shada bhutta		
		Cob length	Cob circumference	
Replication	2	0.21	0.08	
Irrigation frequencies (A)	2	9.53*	1.50*	
Error	4	0.45	0.21	
Spacing (B)	3	7.32*	2.82*	
$(\mathbf{A} \times \mathbf{B})$	6	0.21*	0.11*	
Error	18	0.37	0.17	
Total	35			

*: Significant at 0.05 level of probability

Appendix X. Analysis of variance of the	data of yield contributing characters
of shada bhutta	

Source of variation	DF	Mean square value of yield contributing characters of shada bhutta					
		Row cob ⁻¹ Grain row ⁻¹		No. of grains cob ⁻¹	1000 grains weight		
Replication	2	0.33	0.08	48.11	25.00		
Irrigation frequencies (A)	2	3.34*	0.30 ^{NS}	1056.28*	1477.78*		
Error	4	0.14	0.21	200.11	50.00		
Spacing (B)	3	4.13*	5.39*	3845.53*	965.74*		
$(\mathbf{A} \times \mathbf{B})$	6	0.88*	0.72*	916.53*	51.85*		
Error	18	0.13	0.20	110.19	19.44		
Total	35						

*: Significant at 0.05 level of probability NS: Non significant

Source of variation	D F	Mean square value of yield contributing characters of shada bhutta						
		Chaff weight cob ⁻¹	Shell weight cob ⁻¹	Grain weight cob ⁻¹	Cob weight Plant ⁻¹	Shelling %		
Replication	2	0.19	0.15	4.00	7.46	0.58		
Irrigation frequencies (A)	2	2.18*	3.20*	30.20*	72.55*	1.17*		
Error	4	0.32	0.33	1.33	2.43	1.33		
Spacing (B)	3	2.32*	10.23*	771.66*	1014.02 *	14.05*		
$(\mathbf{A} \times \mathbf{B})$	6	0.56*	0.78*	1.80*	1.59*	0.82*		
Error	18	0.288	0.27	2.22	4.11	1.08		
Total	35							

Appendix XI. Analysis of variance of the data of yield contributing characters of shada bhutta

*: Significant at 0.05 level of probability

Appendix XII. Analysis of variance of the data of yield characters of shada bhutta

Source of variation	D F	Mean square value of yield contributing characters of shada bhutta			
		Grain yield	Stover yield	Biological yield	Harvest index
Replication	2	0.04	0.096	0.25	0.09
Irrigation frequencies (A)	2	0.30*	0.06 ^{NS}	0.58*	0.89 ^{NS}
Error	4	0.01	0.12	0.11	0.71
Spacing (B)	3	6.86*	10.80*	31.67*	19.19*
$(\mathbf{A} \times \mathbf{B})$	6	0.019*	0.68*	0.80*	2.54*
Error	18	0.018	0.11	0.16	0.50
Total	35				

*: Significant at 0.05 level of probability

PLATES

Plate 1: Shada bhutta seed showing in the experimental field

Plate 2: Shada bhutta plant at seedling stage

Plate 3: Weeding of the experimental field of shada bhutta

Plate 4: Shada bhutta at vegtative stage

Plate 5: Field exhibition by honorable supervisor

Plate 6: Tassel formation of shada bhutta

Plate 7: General view of the experimental plot with sign board

Plate 8: Shada bhutta at maturity stage