RESEARCH

Twenty one projects were entertained by SAURES in the year 2008-2009 The result of the ongoing research projects and completed research projects are presented as summary form in this report.

ONGOING RESEARCH PROJECTS

DEVELOPMENT OF SHORT DURATION DROUGHT AND/OR SALINITY TOLERANT GENOTYPES IN Brassica rapa THROUGH INTERSPECIES HYBRIDIZATION WITH B. juncea FOR IMPROVED YIELD AND OIL CONTENT

Dr. Md. Shahidur Rashid Bhuiyan

Extended Summary

B. rapa varieties occupy the major oil seed growing areas of Bangladesh. However, the intolerance of these varieties to drought and / or salinity are one of the major obstacles to expand the varieties into the problem soils. *B. juncea* varieties are low yielding and require long time to mature but they are more tolerant to drought and / or salinity. Thus an interspecific crossing programme was initiated with the view to develop new combination of *B. rapa* genome (AA) to have new materials that would be short duration with higher yield potential and higher drought and / or saline tolerance.

The interspecific crossing was done in winter 2007 using each of the 5 varieties of *B. rapa* along with 3 varieties of *B. juncea*. The 5 varieties of *B. rapa* used in crossing programme were – SAU Sarisha 1, BARI Sarisha 6, SS 75, BARI Sarisha 15 and Tori 7. The varieties of *B. juncea* were - Rai 5, BARI Sarisha 10 and BARI Sarisha 11. The seeds of all the interspecies hybrids were grown in 2008. The leaves of the hybrid plants were of intermediate type with their inflorescence resembled more to *juncea* that to *rapa*. The mean data obtained in different important yield and yield contributing traits are presented in Table 1.

Most of the hybrids showed heterosis for number of secondary branches per plant and number of siliquea per plant. As the plants were of triploid (2n = 3x = 20 AA + 8 B) in nature, most of the male gametes were infertile which were evident by the lower number of seed per siliqua. Most of the siliquae were empty. The siliquae were smaller in size with, on an average, 0.1-0.4 seed per siliqua. The yield was very low because of lower number of seed produced by each plant. Only the basal siliquae produced some seeds. The maturity period was slightly

Principal Investigator and Professor, Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka -1207

Cross	Days to 50% flowering	Plant Height (cm)	No. of primary branches/ plant	No. of Secondary branches/ Plant	No. of siloqua/ Plant	Seed size	No. of seed/ siliqua	Days to maturity
SAU Sarisha 1× Rai 5	38	109	7	8	200	Small	0.3	121
SAU Sarisha × BARI Sarisha 10	40	115	8	9	370	Medium	0.2	119
SAU Sarisha 1 × BARI Sarisha 11	41	107	8	10	455	Small	0.1	117
BARI Sarisha 6 × Rai 5	39	107	6	11	432	Bold	0.1	121
BARI Sarisha 6 × BARI Sarisha 10	42	105	6	11	377	Medium	0.2	124
BARI Sarisha 6 × BARI Sarisha 11	44	139	8	13	301	Medium	0.2	127
SS 75 × Rai 5	37	111	7	15	203	Small	0.1	119
SS 75 × BARI Sarisha 10	39	117	7	16	287	Small	0.3	121
SS 75 × BARI Sarisha 11	39	132	8	14	331	Small	0.2	113
BARI Sarisha 15 × Rai 5	37	111	6	11	365	Medium	0.4	116
BARI Sarisha 15 × BARI Sarisha 10	38	108	7	13	389	Small	0.3	117
BARI Sarisha 15 × BARI Sarisha 11	37	131	6	14	221	Medium	0.2	115
Tori 7 × Rai 5	35	108	7	16	187	Small	0.3	99
Tori 7 × BARI Sarisha 10	36	96	8	17	151	Small	0.2	98
Tori 7 × BARI Sarisha 11	36	105	7	18	189	Small	0.2	97

 Table 1.
 Morphological traits of 15 interspecies hybrids obtained through crosses among varieties of *B. rapa* and *B. juncea*

higher than the *B. rapa* parental genotypes but more or less similar to *B. juncea* varieties. The F_2 seeds obtained would be grown in the coming season to allow elimination of B genome chromosome as the materials could be stabilized as AA.

Table 2. Backcrossing of interspecies hybrids along with *B. rapa* varieties and number of backcrossed seed produced

Backcrosses	No. of seed produced			
(SAU Sarisha 1× Rai 5) × SAU Sarisha 1	15			
(SAU Sarisha 1 × BARI Sarisha 10) × SAU Sarisha 1	-			
(SAU Sarisha 1 × BARI Sarisha 11) × SAU Sarisha 1	10			
(BARI Sarisha 6 × Rai 5) × BARI Sarisha 6	20			
(BARI Sarisha 6 × BARI Sarisha 10) × BARI Sarisha 6	5			
(BARI Sarisha 6 × BARI Sarisha 11) × BARI Sarisha 6	30			
(SS 75 × Rai 5) × SS 75 (SS 75 × BARI Sarisha 10) × SS 75 (SS 75 × BARI Sarisha 11) × SS 75	5			
(BARI Sarisha 15 × Rai 5) × BARI Sarisha 15	17			
(BARI Sarisha 15 × BARI Sarisha 10) × BARI Sarisha 15	14			
(BARI Sarisha 15 × BARI Sarisha 11) × BARI Sarisha 15	11			
(Tori 7 × Rai 5) × Tori 7	-			
(Tori 7 × BARI Sarisha 10) × Tori 7	9			
(Tori 7 × BARI Sarisha 11) × Tori 7	17			

In the second experiment, the F_1 seeds were grown along with the five parental varieties of *B. rapa* to carryout backcrossing. The idea is to enhance the elimination of B chromosomes along with the recovery of *B. rapa* genes in the plants through successive backcrossing programme. Three cross combinations produced no seed upon backcrossing with *B. rapa* genotypes. Others, however, produced only a limited member of seeds (Table 2). The number of seeds per cross combination varied from 5-30. Extra care might be taken to have plants out of these minimal numbers of backcrossed seeds in the next cropping season.