CHARACTERIZATION OF MAIZE (Zea mays L.) LANDRACES OF BANDARBAN IN KHARIF SEASON

M. A. Hasan¹ and M. J. Ullah²

ABSTRACT

An experiment was carried out under field conditions to characterize 10 maize landraces during the period from March 2019 to July 2019 in Kharif season at the research field of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh. Planting materials of the landraces were collected from different locations of Bandarban hill district. The landraces were characterized in terms of plant growth and yield parameters on morphological traits. Each of the landraces were termed as a variety and was named by the color of the grains. As such the varieties (V1) = White, V2= Off white, V3 = Purple, V4= Black, V5= Red, V6= Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated. High level of significance of variation was found among the landraces. Maximum time (67.67 days) for flowering was taken by V10 and minimum time (53.67 days) was taken by V1. V8 took highest time (128.67 days) and V1 took lowest time (105 days) to mature. Tallest plant was found in V_{10} (210.50 cm) and shortest plant was found in V_6 (160 cm), Varieties differed in leaf number, leaf length, leaf width, root length, root spread circumference and tassel length. The maximum cob length (28.4 cm) was recorded from V_1 and the minimum from V_3 (18.25 cm). The highest cob circumference (16.70 cm) was in V4 whereas, the lowest (10 cm) was in V10. V₃ had the maximum grain rows cob⁻¹ (16.17) whereas, V₆ had the minimum (10.75). V₁ exhibited the maximum number of grains row⁻¹ (26.70) and V₉ had the minimum (13.50). Highest number of grains per cob was counted at V1 (335.17) and lowest number was at V9 (164.31). Varieties also differed in stem dry matter, leaf dry weight, shell weight and chaff weight. The greatest grain weight per plant was attained in V_1 (62.55 g) while, the lowest was in V_6 (27 g). V_1 showed the maximum 100 grains weight (23.36 g) and V₆ showed the minimum (14.94 g). V₁ showed the highest grain yield (3.10 t ha⁻¹) and V₆ showed the lowest grain yield (1.28 t ha-1). V8 presented the highest stover yield (6.89 t ha-1) and V6 the lowest (4.40 t ha⁻¹). Highest biological yield (8.92 t ha⁻¹) was exhibited by V_4 and lowest biological yield (5.68 t ha⁻¹) was exhibited by V₆. V₁ showed the maximum harvest index (40.72%) while V₅ showed the minimum harvest index (19.28%).

Keywords: growth parameters, landraces, maize, morphology, yield and yield components.

INTRODUCTION

Maize (Zea mays, L.) is a cereal crop belonging to the family Poaceae. In Bangladesh maize was introduced through Christian Missionaries after Portuguese establishment in Chittagong around 1528 (Kumar and Sachan, 1993). From that time the tribal people in the hilly areas of Chittagong (Chittagong hill tracts, CHT) have been growing local landraces in jhum (mixed cropping) system specially in Bandarban (Chakma and Ando, 2008; Ullah *et al.*, 2017a; Ullah *et al.*, 2017b; Ullah *et al.*, 2012). Modern variety maize cultivation got attention at late twentieth century in Bangladesh. The prolonged and significant loss of genetic variability of the indigenous landraces in most crops occurs due to the inclusion of the modern varieties and land degradation. But maize landraces are considered to be a valuable resource for genetic diversity. So, conservation of the landraces is to be maintained (Yaday *et al.*, 2006).

Despite the inclusion of modern varieties of maize in Bangladesh cropping system, the hill peoples still grow local landraces to consume its grains (Akbar *et al.*, 2016; Ullah *et al.*, 2016). Many land races are available in the hilly areas of the southeast. However, their yield performance has not been yet evaluated and compared yet substantially. Based on the above facts the study was conducted to evaluate the morphological traits and yield performance of some local land races of maize.

MATERIALS AND METHODS

The experiment was conducted during the period from 14 March 2019 to 21 July 2019 at the Agronomy field of Sher-e-Bangla Agricultural University (SAU). The experimental site was

¹MS student ²Professor, Dept. of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh

geographically situated at 23°77′ N latitude and 90°33′ E longitude at an altitude of 8.6 meter above sea level. The soil belonged to the Agro-ecological zone (AEZ) of "The Madhupur Tract", AEZ-28. The climate of the experimental site was subtropical, characterized by the pre-monsoon period or hot season from March to April and the monsoon period from May to October (Edris *et al.*, 1979). The silty-clay soil of the site had pH 5.6, organic carbon 0.45%, organic matter 0.78%, N 0.077%, available P 20 ppm, exchangeable K 0.10 mel. eq. /g soil and available S 45 ppm.

The experiment was laid out in the Randomized Complete Block Design (RCBD) with three replications. The field was divided into 3 blocks and 30 plots. The size of each unit plot was 3.6 m2 (2 m \times 1.8 m). Each plot had 30 plants. Distance maintained between blocks were 1 m. Row to row and plant to plant distances maintained were 0.60 m and 0.20 m respectively. The land was prepared to obtain good tilth by several ploughing, cross ploughing and laddering. Weeds and stubbles were removed; larger clods were broken into small particles and finally attained into a desirable tilth to ensure proper growing conditions.

Recommended doses of well decomposed cow dung manure and chemical fertilizers were applied and mixed well with the soil uniformly.

The indigenous maize landraces are cultivated in "Jhum cultivation" at hilly areas in Kharif season. Seeds of ten local maize landraces were collected from various locations of Bandarban district. Each of the landraces were termed as a variety based on the grain colour of the individual variety and as such V_1 (variety 1) meant for White, V_2 meant for Off white, V_3 meant for Purple, V_4 meant for Black, V_5 meant for Red, V_6 meant for Yellow, V_7 meant for Pink, V_8 meant for Yellow and Brown scattered, V_9 meant for Brown and V_{10} meant for Variegated.

The dose of the applied fertilizer per hectare were cow dung 5 tons, urea 500 kg, TSP 250 kg, MoP 200 kg, gypsum 250 kg, zinc sulphate 10 kg and boric acid 7 kg. Fertilizer was applied following BARI (2016). Urea was applied by three installments. The entire cow dung, TSP, MOP, gypsum, zinc sulphate, boric acid and one third of the urea was applied at the time of final land preparation. The remaining amount of urea was applied as top dressing in two installments, respectively at 25 and 50 days after sowing following BARI (2019). The local maize seeds were sown in lines maintaining row-to-row distance and plant to plant distance of 70 cm and 25 cm, respectively on 14 March, 2019.

Various intercultural operations were done following BARI (2019). At 15 days after sowing, only the healthy plant was kept at a single hill removing the other one.

Regular field observations were made to see the whole growth stages of the crop. The mature cobs were harvested when the husk cover was completely dried and the grain base can be pulled easily from shell. The cobs of five randomly selected plants of each plot were separately harvested for recording yield attributes and other data. The harvested products were taken to the threshing floor and it was dried for about 3-4 days. Data were collected on days to flowering, days to harvesting, plant height (cm), number of leaves plant-1 (no.), leaf length (cm), leaf width (cm), stem base circumference (cm), root length (cm), root area circumference (cm), yield contributing parameters, tassel length (cm), cob length (cm), cob circumference (cm), color of top kernel, number of rows cob⁻¹ (no.), number of grain rows⁻¹ (no.), number of grains cob-1 (no.), grain weight plant⁻¹ (g), stell weight plant-1 (g), chaff weight plant-1 (g), 100 grains weight, yield parameters, grain yield (t ha⁻¹), stover yield (t ha⁻¹), biological yield (t ha⁻¹) and harvest index (%).

Five cobs from each plot were selected randomly and the number of grain rows was counted and then the average result was recorded. The plant samples were dried in an oven at 70°C for 72 hours. The grain yield was adjusted at 14% moisture. The grain yield in t/ha was calculated using the following formula:

Grain yield =
$$\frac{\text{Grain yield per meter sqare (kg)} \times 10000}{1000}$$

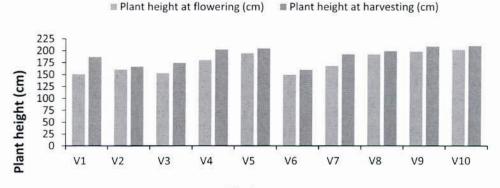
1000

All the dry plant parts except grains are gathered to calculate stover yield. The stover yield was measured according to the following formula:

Stover yield (t ha⁻¹)
$$\frac{\text{Stover yield per meter square (kg)} \times 10000}{1000}$$

Final grain yield was adjusted at 14% moisture. Grain yield together with stover yield was regarded as biological yield and calculated with the following formula:

Biological yield (t ha^{-1}) = Grain yield (t ha^{-1}) + Stover yield (t ha^{-1})


Harvest Index denotes the ratio of economic yield to biological yield and was calculated with the following formula:

Harvest Index (%) = $\frac{\text{Economic Yield (Grain weight)}}{\text{Biological yield (Total weight)}} \times 100$

The collected data were compiled and analyzed following the analysis of variance (ANOVA) techniques using the software Statistix 10 (Statistix, 1985). The significant differences among the treatment means were compared by Least Significant Difference (LSD) at 5% levels of probability as per Gomez and Gomez (1984).

RESULTS AND DISCUSSION

The plant height (Fig. 1) differed significantly among the varieties of the maize land races. At the flowering stage, V_{10} showed the tallest plant (202 cm), while V_6 showed the shortest plant (150 cm). Similarly, at harvesting stage, V_{10} showed the tallest plant (210.50 cm) and V_6 (160 cm) showed the shortest plant. Other landraces showed intermediate result at both flowering and harvesting stage. Ullah *et al.*, (2017b) found the landraces plant height ranges from 152 cm to 215 cm which almost close to the present study.

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated

Fig. 1. Plant height of local maize landraces at flowering and harvesting stage (LSD value = 15.35 at flowering and 10.08 at harvesting)

At the tasseling stage, the highest number of leaves per plant (18) were observed in V_8 landrace followed by V_{10} (17.67), V_3 (17.67), V_7 (16.67), V_9 (16) and V_4 (15.67), while lowest (13) in V_1 followed by V_2 (13.67), V_6 (15) and V_5 (15) (Table 1). The findings are in line with those of Dijk *et al.* (1999). Triveni et al. (2014) found that number of leaves per plant of maize significantly correlated with its variety and grain yield.

Maximum leaf length was noted in V_2 (95 cm) which was statistically similar to V8 (91.5 cm) and V_1 (89.5 cm) and significantly different from all other landraces. Minimum was noted in V_3 (67.5 cm) (Table 1) which was statistically different from that of V_2 , V_8 and V_1 ; and statistically similar to all other landraces. Silva *et al.* (2010) reported that the leaf length variation was observed in maize varieties and longest 90.6 cm was AG7000 and shortest 74.7 cm was in Master.

Maximum leaf width was found in V_7 (7.75 cm) which was statistically similar to all other landraces except V_1 and V_2 whereas, the minimum was found in V_1 (6 cm) (Table 1) which was statistically

similar to all other landraces except V_1 , V_8 , V_4 and V_6 . Other varieties showed intermediate value. Silva *et al.* (2010) observed a significant difference among the landraces according to leaf width.

At harvesting, number of leaves was the highest with V_8 which was at par with those of V_3 , and V_9 . The leaf length was the longest with V_2 , which however, was statistically similar to those of V_1 and V_8 . The leaf width was the widest in the landraces of V_7 which was statistically identical with those of V_5 , V_6 and V_8 .

Results showed that the variety V_{10} took the maximum time (67.67 days) for flowering which was statistically similar with V_8 (66.67 days) and V_6 (64.33 days). On the other hand, minimum time was taken by V_1 (53.67 days) which was statistically similar with V_2 (54.33 days), V_9 (55.67 days), V_3 (56.67 days) and V_5 (57.67 days). Ullah *et al.* (2017b) found that minimum time needed for maize landraces to flowering was 53.66 days and maximum time was 65 days.

Days to harvesting was significantly influenced by the different maize landraces (Table 1). V_8 took highest time (128.67 days) which was statistically similar with V_7 (128 days) and V_{10} (126 days). Here the lowest time was recorded by V_1 (105 days). Ullah *et al.* (2017b) recorded highest 129 days and lowest 106 days for different maize landraces harvesting in Bangladesh.

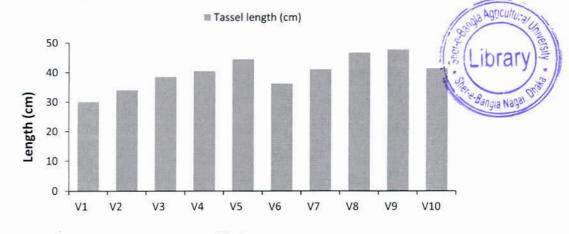
Table 1. Number of leaves/plant, leaf length, leaf width, days to flowering ad days to harvesting of local maize land races

Variety	At tasseling			At harvesting			Days to flowering	Days to harvesting
	Number of leaves plant ⁻¹	Leaf length (cm)	Leaf width (cm)	Number of leaves plant ⁻¹	Leaf length (cm)	Leaf width (cm)		
V ₁	13.00 d	89.50 a	6.00 c	13.00 d	89.50 a	6.00 c	53.67 d	105.00 d
V ₂	13.67 cd	95.00 a	6.50 bc	13.67 cd	95.00 a	6.50 bc	54.33 d	108.33 cd
V3	17.67 a	67.50 c	6.50 bc	17.67 a	67.50 c	6.50 bc	56.67 d	111.33 cd
V4 or	15.67 a-c	77.50 b	7.50 ab	15.67 a-c	77.50 b	7.50 ab	61.00 bc	113.67 bc
V5 S	15.00 b-d	78.00 b	7.00 a-c	15.00 b-d	78.00 b	7.00 a-c	57.67 cd	118.00 b
V6 .	15.00 b-d	77.50 b	7.25 ab	15.00 b-d	77.50 b	7.25 ab	64.33 ab	114.00 bc
Vy 1	16.67 ab	79.00 b	7.75 a	16.67 ab	79.00 b	7.75 a	61.67 bc	128.00 a
V ₈	18.00 a	91.50 a	7.65 ab	18.00 a	91.50 a	7.65 ab	66.67 a	128.67 a
V9	16.00 a-c	81.50 b	6.65 a-c	16.00 a-c	81.50 b	6.65 a-c	55.67 d	114.67 bc
VID VI	17.67 a	82.50 b	7.00 a-c	17.67 a	82.50 b	7.00 a-c	67.67 a	126.00 a
LSD (0.05)	2.44	5.96	1.20	2.44	5.96	1.20	4.22	6.34

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated. Means followed by different letters in the same column differ significantly according to LSD test at 0.05 level of probability.

The stem base circumference was also different in maize landraces (Table 2). At flowering, the highest value was recorded in V_{10} which was statistically similar with V_8 (7.85 cm) and V_3 (4.5 cm) showed the lowest circumference of stem base at numerical number. At harvesting stage, top value was found in V_6 (9.35 cm) and least value was found in V_1 (5.05 cm) (Table 1). Ullah *et al.*, (2017b) reported that stem base circumference of maize varieties ranges from 9.11 cm to 6 cm.

The root system length was the highest with V_4 and V_8 (around 24 cm) and the shortest root was found with V_3 . Root area circumference was found maximum in V_9 (25 cm). Minimum root area circumference was found in V_7 (14.5 cm) followed by V_6 (16.5) (Table 2).


The numerical highest cob circumference (16.70 cm) was recorded in V_4 while numerical lowest cob circumference (10 cm) was recorded in V_{10} . Ullah *et al.* (2017a) found that the landraces cob circumference ranged between 19.11 cm to 8.93 cm.

Variety	Stem base circumference at flowering (cm)	Stem base circumference at harvesting (cm)	Root length (cm)	Root area circumference (cm)	
V_1	4.95 de	5.05 e	19.40 cd	22.50 b	
V ₂	5.45 с-е	6.95 cd	19.90 cd	18.50 de	
V ₃	4.50 e	6.20 d	17.50 d	17.00 e	
V_4	6.00 bc	7.15 c	23.50 ab	18.50 de	
V ₅	5.80 b-d	6.80 cd	17.95 cd	18.50 de	
V_6	6.55 b	9.35 a	21.00 bc	16.50 ef	
V ₇	6.75 b	7.00 cd	19.00 cd	14.50 f	
V ₈	7.85 a	8.20 b	24.00 ab	20.00 cd	
V ₉	6.00 bc	7.00 cd	20.00 cd	25.00 a	
V_{10}	8.40 a	8.45 b	24.50 a	21.50 bc	
LSD (0.05)	1.04	0.83	3.07	2.47	
CV (%)	9.71	6.68	8.65	7.49	

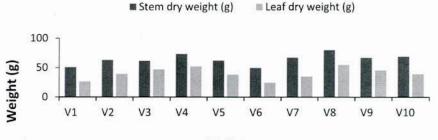
 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black , V_5 = Red , V_6 = Yellow , V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated; Means followed by different letters in the same column differ significantly according to LSD test at 0.05 level of probability.

Maize landraces presented a significant difference in respect of the number of grains row-1 (Table 1). Among the varieties, V_3 had the maximum no. of rows cob-1 (16.17) and V_6 had the minimum no. of rows cob-1 (10.75) which was statistically similar with other two varieties V_5 and V_2 . This result was different from the study of Asghar *et al.* (2010) who found that the varieties did not differ significantly for number of rows cob-1. The highest tassel length (47.75 cm) was recorded in V_9 and lowest (30 cm) was recorded in V_1 (Fig. 2).

Variety

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 -Brown and V_{10} = Variegated

Fig. 2. Tassel length of maize landraces (LSD value = 3.06)


The maximum cob length was found in V_1 , while the minimum with V_7 (Table 3). The widest cob was with V_4 , while the thinnest was with V_{10} over V_2 , which showed the cob length of about 27.25 cm. Minimum cob length (18.25 cm) was from V_3 (Table 3). The cob circumference was the widest with V_4 , which however was at par with those of V_1 and V_2 . Maize landraces showed significant difference in respect of the number of grains row-1 (Table 3). Among the varieties, V_1 exhibited the maximum number of grains row-1 (13.5), which was statistically similar with V_7 (25.5) and V_9 exhibited the minimum number of grains row-1 (13), which was statistically similar with V_2 (14.33). Significant difference was found in different maize varieties in terms of total number of grains cob-1 (Table 3). Highest number of grains was counted at V_1 (335.17). Lowest number of grains was counted at V_9 (164.31) which was statistically similar to V_2 (172.10).

Variety	Cob length (cm)	Cob circumference (cm)	Grain rows cob ⁻¹	Grains row ⁻¹	Total number of grains cob ⁻¹
V_1	28.40 a	14.95 a-c	12.70 bc	26.70 a	335.17 a
V_2	27.25 a	15.60 ab	11.50 cd	14.33 f	172.10 f
V_3	18.25 e	13.00 с-е	16.17 a	19.75 c	312.88 b
V_4	24.25 b	16.70 a	12.25 bc	21.75 b	266.42 c
V_5	23.35 bc	13.95 b-d	11.50 cd	18.13 de	215.83 de
V_6	21.95 cd	12.70 de	10.75 d	18.00 de	200.50 e
V_7	18.50 e	11.00 ef	12.17 bc	25.50 a	301.83 b
V_8	21.55 cd	13.80 b-d	13.08 b	16.58 e	217.17 de
V_9	23.00 b-d	13.05 с-е	12.17 bc	13.50 f	164.31 f
V_{10}	21.00 d	10.00 f	12.33 bc	18.83 cd	231.67 d
LSD (0.05)	2.24	2.12	1.32	1.57	21.95
CV (%)	5.73	9.17	6.15	4.76	5.29

Table 3. Tassel length, cob length, cob circumference, rows cob⁻¹, grains row⁻¹, total no. of grains cob⁻¹ of local maize varieties.

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated; Means followed by different letters in the same column differ significantly according to LSD test at 0.05 level of probability.

It was exhibited that highest stem dry weight per plant was found in V_8 . (80 g) which was followed by V_4 (73.25 g) and V_{10} (69 g). Lowest stem dry weight per plant was found in V_6 (49.75 g) which was followed by V_1 (50.80 g) (Fig. 3).

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered, V_9 = Brown and V_{10} = Variegated

Fig. 3. Maize landraces stem dry weight and leaf dry weight (LSD value = 11.57 and 6.29 respectively).

From figure 3, it was also exhibited that highest leaf dry weight per plant was found in V_8 (55 g) which was followed by V_4 (52 g). Lowest leaf dry weight per plant was found in V_6 (24.5 g) which was followed by V_1 (26.40 g) (Fig. 3).

Different varieties had significant differences on total grain weight per plant. Total grain weight per plant ranges from 62.55 g to 27 g. Results represented in Table 4 indicated that the highest total grain

weight per plant was attained in V₁ (62.55 g) followed by V₃ (55.67 g) whereas, the lowest was in V₆ (27 g) followed by V₅ (31.13 g).

A statistically significant difference between landraces was found regarding the 100 grains weight. Table 4 shows the effect of local varieties on 100 grains weight. Among the varieties, the maximum 100 grains weight (23.36 g) was found from V_1 . V_6 showed the minimum 100 grains weight (14.94 g).

Local maize landraces showed a significant difference in respect of chaff weight per cob Table 4). Among the landraces, V_6 showed the maximum chaff weight (10.88 g) and V_{10} showed the minimum chaff weight (4.75 g) which was statistically similar with V_8 (4.88 g). Ullah *et al.* (2017a) observed that chaff weight of landraces ranges 8.64 to 4.34 cm which is similar to this study.

Significant variation was recorded in case of shell weight for different maize landraces (Table 4). The shell weight ranges from 17.13 g to 9.75 g due to different maize landraces. The highest shell weight (17.13 g) was recorded from V_4 . On the other hand, the lowest shell weight (9.75 g) was recorded from V_9 .

Maize landraces performed significant difference in respect of grain yield (Table 4). Among the varieties, V_1 showed the highest grain yield (3.10 t ha⁻¹). On the other hand, V_6 showed the lowest grain yield (1.28 t ha⁻¹) which was statistically similar with V_5 (1.30 t ha⁻¹).

The effect of landrace varieties on stover yield is displayed in Table 4. In case of stover yield, a significant difference between varieties was found. V_8 showed the highest stover yield (6.89 t ha⁻¹) which was statistically similar with V_4 (6.71 t ha⁻¹) and V_6 showed the lowest stover yield (4.40 t ha⁻¹) which was statistically similar with V_1 (4.52 t ha⁻¹).

Significant difference in respect of biological yield was observed in maize landraces (Table 4). Among the varieties, V_4 exhibited the highest biological yield (8.92 t ha-1) which was statistically similar with V_8 (8.76 t ha-¹) and V_3 (8.32 t ha-¹). On the other hand, V_6 showed the lowest biological yield (5.68 t ha-¹). Asghar *et al.* (2010) found the different findings as the varieties did not show any difference in producing biological yield.

Variety	Total grains weight	100 grains	Chaff weight	Shell weight	Grain yield	Stover yield	Biological yield (t ha ⁻¹)	Harvest index
	plant ⁻¹ (g)	weight	$cob^{-1}(g)$	cob ⁻¹ (g)	(t ha ⁻¹)	(t ha ⁻¹)		(%)
		(g)						
V ₁	62.55 a	23.36 a	9.30 bc	15.90 ab	3.10 a	4.52 c	7.62 bc	40.72 a
V ₂	40.17 ef	22.02 ab	8.78 c	15.71 a-c	1.97 d	5.61 b	7.58 bc	25.96 c
V ₃	55.67 b	21.84 ab	6.25 e	14.88 bc	2.60 b	5.72 b	8.32 ab	31.30 b
V_4	50.13 c	18.90 cd	9.75 b	17.13 a	2.21 c	6.71 a	8.92 a	24.97 c
V ₅	31.13 gh	15.44 e	9.94 b	13.63 cd	1.30 f	5.46 b	6.76 d	19.28 e
V_6	27.00 h	14.94 e	10.88 a	14.63 b-d	1.28 f	4.40 c	5.68 e	22.46 d
V ₇	45.50 cd	17.65 d	7.08 d	15.00 a-c	1.82 d	5.48 b	7.30 cd	25.06 c
V_8	42.46 de	19.48 cd	4.88 f	16.29 ab	1.87 d	6.89 a	8.76 a	21.33 de
V ₉	35.75 fg	18.35 d	6.08 e	9.75 e	1.60 e	5.66 b	7.26 cd	22.03 d
V ₁₀	47.58 c	20.52 bc	4.75 f	12.67 d	2.00 d	5.53 b	7.53 cd	26.57 c
LSD (0.05)	4.75	2.11	0.76	2.14	0.20	0.67	0.78	2.22
CV (%)	6.32	6.40	5.71	8.58	5.94	6.99	5.97	4.99

Table 4. Grain yield, stover yield, biological yield and harvest index of different maize landraces.

 V_1 = White, V_2 = Off white, V_3 = Purple, V_4 = Black, V_5 = Red, V_6 = Yellow, V_7 = Pink, V_8 = Yellow and Brown scattered. V_9 = Brown and V_{10} = Variegated; Means followed by different letters in the same column differ significantly according to LSD test at 0.05 level of probability.

Maize landraces harvest index differences are shown in Table 4. The conducted experiment revealed that there was significant statistical difference between local varieties regarding harvest index. V_1 showed the maximum harvest index (40.72%). On the other hand, V_5 showed the minimum harvest index (19.28%) which was statistically similar with V8 (21.33%). Based on the experimental results, it

may be concluded that White kernel landrace performed better yield than others. In case of stover production, yellow and brown scattered kernel landrace is higher than the other landraces. It can be used as silage producing genotype in kharif season.

Acknowledgement: Authors acknowledge the financial support of Sher-e-Bangla Agricultural University Research System (SAURES) to conduct this study.

REFERENCES

- Akbar, M.A., Siddique, M.A., Marma, M.S., Rahman, M.M., Molla, M.R.I., Rahman, M.M., Ullah. M.J., Hossain, M.A. and Hamid, A., 2016. Planting Arrangement, Population Density and Fertilizer Application Rate for White Maize (*Zea mays L.*) Production in Bandarban Valley. J. Agril. For. Fish., 5(6): 215-224.
- Asghar, A., Ali, A., Syed, W.H., Asif, M., Khaliq, T. and Abid, A.A. 2010. Growth and Yield of Maize (Zea mays L.) Cultivars Affected by NPK Application in Different Proportion. Pakistan J. Sci., 62(4): 211-216.
- Edris, K.M., Islam, A.M.T., Chowdhury, M.S. and Haque, A.K.M.M. 1979. Detailed Soil Survey of Bangladesh, Dept. Soil Survey, BAU and Govt. Peoples Republic of Bangladesh. 118 p.
- Angelo, M.A., Pinheiro de Carvalho, P., Gananca, J.F.T., Abreu, I., Nelia, F.S., Teresa, M., Santos, M.D., Vieira, M.R.C. and Motto, M. 2008. Evaluation of the maize (*Zea mays L.*) diversity on the Archipelago of Madeira. Genet. Resour. *Crop Evol.*, 55: 221-233.
- BARI. 2016. 'Krishi Projukti Hathboi'. Bangladesh Agricultural Research Institute, Joydebpur. Gazipur. 370-381 pp.
- Chakma, S.S. and Ando, K. 2008. Jhum cultivation in Khagrachari hill district of Bangladesh- a subsistence farming practices in ethnic minorities. J. Agrofores. Environ., 2(2): 1-8.
- Dijak, M., Modarres, A.M. and Hamilton, R.I. 1999. Leafy reduced-stature maize hybrids for shortseason environments. Crop Sci., 39: 1106-1110.
- Gomez, M.A. and Gomez, A.A. 1984. Statistical Procedures for Agricultural Research (2 edn.). John Wiley and sons. New York, Chichester, Brisbane, Toronto. 97-129, 207-215. pp.
- Kumar, M. and Sachan, J.K.S. 1993. Antiquity of maize in India. MNL. 67: 98.
- Silva, P.S., Kathia M.S., Silva P.I.B., Oliveira, V.R. and Ferreira, J.L.B. 2010. Green ear yield and grain yield of maize cultivars in competition with weeds. Planta Daninha. 28(21): 77-85.
- Triveni, S.A., Kumar, S.C. and Dwivedi, R.P. 2014. Traits based on testcross progeny performance of maize. ARPN J. Agril. Biol. Sci., 7: 5.
- Ullah, M.M., Malek, M.A., Karim, M.M. and Ali, M.S. 2012. A Report on Jhum Research on CHT. Hill Agricultural Research Station, Bangladesh Agricultural Research Institute, Khagrachari Hill District. 31 p.
- Ullah, M.J., Islam, M.M., Fatima, K., Mahmud, M.S. and Rahman, J. 2016. Evaluating yield and yield performance of transplanted white maize varieties under varying planting geometry. J. Expt. Biosci., 7(2): 21-30.
- Ullah M.J., Islam, M.M., Fatima, K., Mahmud, S., Rahman, J. and Akhter, S. 2017a. Comparing modern varieties of white maize with local races: ear characters. J. Expt. Biosci., 8(2): 49-58.
- Ullah, M.J., Islam, M.M., Fatima, K., Mahmud, M.S., Akhter, S., Rahman, J. and Quamruzzaman, M. 2017b. Comparing modern varieties of white maize with landraces in Bangladesh: phenotypic traits and plant characters. J. Expt. Biosci., 8(1): 27-40.
- Statistix 10. 1985. Statistix 10. Data analysis software for researchers. https://www.statistix.com /features/
- Yadav, R.P., Singh, P., Agarwal, R.K. and Yadav, M.K. 2006. Improved technology for sustainable production of maize (Zea mays L.) in Shivalik foothills of Himachal Pradesh. Indian J. Dryland Agric. Res. Dev., 21: 1-6.

Shor-e-Bangla Agricultural University And H. Sur Sur . man