DETAIL MORPHOLOGICAL IDENTIFICATION AND
PREVALENCE OF DOG FLEA (Ctenocephalides canis) AND CAT FLEA (Ctenocephalides felis) in Dhaka City
MD. YAKUB ALI

DEPARTMENT OF MICROBIOLOGY AND PARASITOLOGY SHER-E-BANGLA AGRICULTURAL UNIVERSITY
 DHAKA-1207

JUNE, 2019

DETAIL MORPHOLOGICAL IDENTIFICATION AND
 PREVALENCE OF DOG FLEA (Ctenocephalides canis) AND CAT FLEA (Ctenocephalides felis) in Dhaka City

BY
MD. YAKUB ALI
Reg. No. 1205074
A Thesis
Submitted to the Department of Microbiology and Parasitology Sher-e-Bangla Agricultural University, Dhaka
In Partial Fulfillment of the Requirements
for the Degree of
MASTER OF SCIENCE (M.S) IN PARASITOLOGY DEPARTMENT OF MICROBIOLOGY AND PARASITOLOGY SEMESTER: JAN-JUN/ 2019

APPROVED BY

Dr. Uday Kumar Mohanta

Supervisor
Chairman \& Associate Professor
Department of Microbiology and Parasitology
Sher-e-Bangla Agricultural University

Dr. K.B.M. Saiful Islam

Co-supervisor
Chairman \& Associate Professor
Department of Medicine and Public Health Sher-e-Bangla Agricultural University

Dr. Uday Kumar Mohanta
Chairman
Department of Microbiology and Parasitology
Sher-e-Bangla Agricultural University, Dhaka-1207

DEPARTMENT OF MICROBIOLOGY AND PARASITOLOGY

Sher-e-Bangla Agricultural University
Sher-e-Bangla Nagar, Dhaka-1207

Memo No: SAU/

CERIIFICAIE

This is to certify that the thesis entitted "PREVALENCE AND MORPHOLOGICAL IDENTIFICATION OF DOG FLEA (Ctenocephalides Canis) AND CAT FLEA (Ctenocephalides Felis) IN $\mathcal{D} \mathcal{H} \mathcal{A} \mathcal{K}$ A CIIY" submitted to the Faculty of Animal Science \& Veterinary Medicine, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfiliment of the requirements for the degree of Master of Science in Parasitology, embodies the result of a piece of bona fide research work carried out by Md. Yакиb Ali, Registration No.: 12-05074 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that any help or source of information, received during the course of this investigation has been duly acknowledged.

Dated:
Place: Dhaka, Bangladesh

Dr. Uday Kumar Mohanta
Department of Microbiology and Parasitology
Sher-e-Bangla Agrícultural University

ACKNOWLEDGEMENT

At the Geginning, the author bows the grace and mercy of the "Almighty God", the omnipresent, omnipotent and omniscient, who enabled him to complete this thesis.

The author with a sense of respect expresses his heartfelt gratitude to his Supervisor Dr. Uday Kumar Mohanta, Chairman and Associate Professor, Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka for his untiring and painstaking guidance, invaluable suggestions, continuous supervision, timely instructions, inspirations and constructive criticism throughout the tenure of research work.

Heartfelt gratitude and profound respect are due to his Co-supervisor DTr. X.B.M. Saiful Islam, Chairman and Associate Professor, Department of Medicine and Public Heath, Sher-e-Bangla Agricultural University, for his co-operation, constructive criticism, and valuable suggestions for the modification and improvement of the research work.

The author is also grateful to all the stuffs of the Department of Microbiology and Parasitology, Sher-e-Bangla Agricultural University, Dhaka for their co-operation. The author deeply owes his whole hearted thanks to all the relatives, friends, well-wishers specially S. M. Abdullah, Amrito Barman, for their help and inspiration during the period of the study.

The author takes the opportunity to express his indebtedness and profound respect to his Geloved father Md. Mazibar Rahman, mother Mst. Amena Begum, grandfather Mohammad Ali, for their love, Glessings, prayers, sacrifices, moral support and encouragement for his study which can never be forgotten.

The author sincerely acknowtedges the financial aid from ministry of science and technology as $\mathcal{N S T}$ fellowship that enable him to complete the research work more smoothly.

The Author

LIST OF CONTENTS

CHAPTER		TITLE	PAGE NO.
		ACKNOWLEDGEMENT	i
		LIST OF CONTENTS	ii
		LIST OF FIGURES	iii-iv
		LIST OF TABLES	v
		ACRONYMS AND ABBREVIATIONS	vi
		ABSTRACT	vii
CHAPTER 1		INTRODUCTION	1-3
CHAPTER 2		REVIEW OF LITERATURE	4-9
CHAPTER 3		MATERIALS AND METHODS	10-11
	3.1	Site selection	10
	3.2	Restraining of animal	10
	3.3	Sample Collection and preservation	10
	3.4	Permanent slide preparation protocol for identification	10
	3.5	Microscopic examination for morphology study	11
CHAPTER 4		RESULTS AND DISCUSSION	12-30
	4.1	RESULTS	12-27
	4.1.1	Morphology studies	12-23
	4.1.2	Prevalence studies	24-27
	4.2	DISCUSSION	28-29
CHAPTER 5		SUMMARY AND CONCLUSION	30
		REFERENCES	31-34

LIST OF FIGURES

$\begin{gathered} \hline \text { FIGURE } \\ \text { NO. } \end{gathered}$	TITLE	PAGE NO.
1	Morphology of the Genus Ctenocephalides (Male)	13
2	Morphology of the Genus Ctenocephalides (Female).	14
3	Female of C. felis, a) Shape of the head; b) Length of the $1^{\text {st }}$ and $2^{\text {nd }}$ spines of genal comb.	16
4	Female of C. canis, c) Shape of the head; d) Length of the $1^{\text {st }}$ and $2^{\text {nd }}$ spines of genal comb.	16
5	Female of C. felis, Number of bristles on the lateral metanotal area (LMA) or metepisternite.	17
6	Female of C. canis, Number of bristles on the lateral metanotal area (LMA) or metepisternite.	17
7	Female of C. felis, Number of notches (5) on the hind tibia.	18
8	Female of C. canis (10X). Number of notches (7) on the hind tibia.	18
9	Female of C. felis, Number of notches (6) on the hind tibia.	19
10	Female of C. canis, Number of notches (8) on the hind tibia.	19
11	Female of C. felis, Number of stout bristles between post-median and apical long bristles of the hind tibia.	20

LIST OF FIGURES (CONT'D)

FIGURE NO.	TITLE	$\begin{aligned} & \hline \text { PAGE } \\ & \text { NO. } \end{aligned}$
12	Female of C. canis, Number of stout bristles between post-median and apical long bristles of the hind tibia.	20
13	Female of C. felis, Metatibial formula of chaetotaxy.	21
14	Female of C. canis, Metatibial formula of chaetotaxy	21
15	Female of C. felis, Length of hilla of spermathica.	22
16	Female of C. canis, Length of hilla of spermathica.	22
17	Male of C. felis, Shape of the manubrium of the clasper.	23
18	Male of C. canis, Shape of the manubrium of the clasper.	23

LIST OF TABLES

TABLE NO.	NAME	PAGE NO.
$\mathbf{1}$	Differential morphological properties between C. felis and C. canis	15
$\mathbf{2}$	Overall number of animals examined for flea infestation.	25
$\mathbf{3}$	Comparison of the number of examined animals according to collection site.	25
$\mathbf{4}$	Comparison of the number of infested animal according to their sex. Comparison of the flea infested young and adult animals.	26
$\mathbf{6}$	Comparison of the number of the flea infested stray and pet animals. Number of cross infestation of flea between	27
$\mathbf{8}$	dog and cat. Comparison of the number of fleas examined according to their sex.	27

ACRONYMS AND ABBREVIATIONS

ABBREVIATION	FULL MEANING
CFP	$=$ Care for Paws
CVH	$=$ Central Veterinary Hospital
et al.	$=$ Potassium others/Associates
KOH	$=$ Lateral Metanotal Area
LMA	$=$ Milimiter
Mm	$=$ Master of Science
M.S.	$=$ Sher-e-Bangla Agricultural University
PAW	$=$ Positive
SAU	$=$ Negative
+ve	$=$ Percent
-ve	
$\%$	

MORPHOLOGICAL IDENTIFICATION AND PREVALENCE OF DOG FLEA (Ctenocephalides canis) AND CAT FLEA (Ctenocephalides felis) in Dhaka City

Abstract

Ctenocephalides felis and Ctenocephalides canis are the most important ectoparasites of dogs and cats throughout the world; they themselves affect the host and act as vectors of diseases. The main aim of the present study was to assess the prevalence and identify the morphological properties of Ctenocephalides spp. in both stray and pet dogs and cats in Dhaka City. Typical morphological characteristics were observed in both species. The two species were separated according to the shape of the head, length of the first spine of the genal comb, number of bristles on the lateral metanotal area (LMA), the number of short stout bristles in the interval between the postmedian and apical long bristles of the dorsal margin of the hind tibia. Males were further identified by the shape of the manubrium of the clasper and females were identified by observing the size of the hilla of spermatheca at the posterior end. A total of 25 flea infested dogs and 25 flea infested cats were found from 57 dogs and 77 cats, respectively. In this study, a higher prevalence of flea was recorded in both dogs (43.86\%) and cats (32.47\%). A higher prevalence was recorded in stray dogs (61.11%) and cats (79.17%) than that in pet dogs (14.29\%) and cats (11.32\%). The prevalence of flea infestation was 48.28% in young dogs and 39.29% in adult dogs, respectively. In case of cat, 34.62% young and 31.37% adult were found to be infested by fleas. Among the examined fleas of dogs, 9 (60%) were C. canis and $6(40 \%)$ were C. felis. Again, among the examined fleas of cats, 2 (13.33%) were C. canis and 13 (86.77%) were C felis. Of the 11 C. canis identified, were $8(72.73 \%)$ female fleas and $3(27.27 \%)$ male fleas. Of the 19 examined C. felis identified as $18(94.74 \%)$ were female fleas and $1(5.26 \%)$ male flea. Both fleas have public health significance. Therefore, proper attention needs to be paid for the prevention of flea borne diseases through the control of dogs and cats.

Keywords: Dog flea, Cat flea, Morphological identification, Prevalence, Dhaka city

CHAPTER 1

INTRODUCTION

Fleas, particularly the species of Ctenocephalides, are common ectoparasites of domesticated dogs and cats throughout the world (Mircean et al., 2010; Gracia et al., 2013; Salant et al., 2013; Hajipour et al., 2015). Fleas are clinically important parasites for human health since they may play a role as parasites by themselves causing allergic dermatitis or other conditions due to their feeding activities. Also serve as vectors and transmitting important disease causing pathogens. The cat flea, Ctenocephalides felis, is a known vector for Bartonella henselae, Bartonella clarridgeiae and Rickettsia felis, which can cause cat scratch disease, endocarditis and cat flea typhus in human, respectively (Dryden and Rust, 1994; Kenny et al., 2003; Kramer and Mencke, 2001; Rolain et al., 2003; Shaw et al., 2004). Dog and cat fleas are known to be intermediate hosts of Dipylidium caninum, which can be transmitted to pets and humans (Soulsby, 1982; Guzman, 1984). Domestic animals such as dog, cat, or other pets, may play an important role as bridging hosts for fleas of different wild animals, domestic animals, and humans, as they come into contact with different animals due their seeking behavior and therefore acquire the fleas of different animals (Dobler and Pfeffer, 2011). Fleas are the common etiology of dermatitis, being responsible for producing allergic dermatitis (Sousa, 2012). Fleas infestations can cause considerable irritation to animals and humans, and can lead to severe disorders, such as anaemia and dermatological problems, because repeated infestation of dogs and cats may result in hypersensitivity to components of flea saliva, which, in turn, can cause flea allergic dermatitis (Dryden and Rust, 1994; Kunkle et al., 2003; Newbury and Moriello, 2006). These cat and dog fleas are known as vector of the pathogens causing plague, murine typhus, and feline leukemia. Approximately 94% of all flea species are reported to feed on mammals. Most of the medically important fleas, including genus Ctenocephalides, are found within the family Pulicidae. The dog flea, C. canis, is an important ectoparasite of both wild and domestic canids around the world (Durden et al., 2005). It is similar in appearance to the ubiquitous cat flea, C. felis, but is encountered less frequently and thus has not been studied thoroughly. The dog flea has been reported from many mammalian hosts
including dogs, cats, rabbits, rats, gray foxes, red foxes, woodchucks, and humans (Fox, 1940).

Stray cats wander outdoors and can be found on the streets, food courts, markets and can also be free roaming but return to human habitation after foraging for food (Rust and Dryden, 1997). These cats are exposed to many types of diseases and may harbour various parasites that are transmittable to human such as; toxoplasmosis, toxocariasis, opisthorchiasis, leishmaniasis (Bowman et al., 2010; Bush et al., 2011; Pennisi et al., 2013; Youssef and Uga, 2014).

Review of literatures revealed that at least 36 important zoonotic diseases are acquired from dogs worldwide, although the occurrence of some important zoonotic diseases acquired from dogs have reported from Bangladesh but the inland reports on this aspect are very limited (Samad, 2000).

There are approximately 2,500 species of fleas (Durden and Hinkle, 2009) and within the family Pulicidae, the genus Ctenocephalides, includes 13 species and subspecies (Beaucournu and Menier, 1998) according to different morphological criteria based on the shape and structure of their genitalia and the presence and distribution of setae, spines, and ctenidia on the body (Bitam et al., 2010). Dobler and Pfeffer (2011) reviewed the published literature from 1980 to 2010 for occurrence and frequency of fleas in the dog populations of different countries. They found that more than 15 different flea species have been described in domestic dogs, being the cat flea (C. felis) the most prevalent flea species found globally on dogs. C. felis and C. canis have been studied by different authors (Gil Collado, 1949; Gil Collado, 1960; Beaucournu and Launay, 1990; Lewis, 1993; Beaucournu and Menier, 1998; Menier and Beaucournu, 1998; Linardi and Guimaraes, 2000 and Durden and Traub, 2002); they based their characterization on the shape of the head, the length of the first spine of the genal comb, number of spines in the metepisternite, the distribution of spines in the hind tibia, and male and female genitalia. However, the variations of chaetotaxy, especially those on the dorsal margin of the hind tibia and metepisternite found in some individuals, have
sometimes been erroneously treated as hybrids (Holland, 1949; Fox, 1952; Amin et al., 1974; Amin, 1976).

In our country, there is no any detailed research on the morphology, biology, control strategies and prevalence data of C. felis and C. canis. In the present work, prevalence and comparative morphological study between C. canis and C. felis in dog and cat have been carried out of Dhaka city.

Keeping all the points mentioned above, the present piece of research work was under taken with the following objectives.

Objectives:

\checkmark To study the detail morphological properties of C. felis and C. canis.
\checkmark To study the cross infestation by C. felis and C. canis between dogs and cats, respectively.
\checkmark To study the prevalence of flea infestation in dogs and cats.
\checkmark To compare flea infestation rate between stray dogs or cats with pet dogs or cats.

CHAPTER 2

REVIEW OF LITERATURE

2.1 Flea Acts as Vectors of Diseases

C. canis and C. felis are known to be intermediate hosts of Dipylidium caninum, which can be transmitted to dogs, cats and humans (Guzman, 1984 and Soulsby, 1982).

Arthropod vectors transmit many new and reemerging diseases. Some of the notorious genera like Ctenocephalides are related to plague and murine typhus but some parasitise of domestic animals like dog and cat that infect humans temporarily. Such arthropods should be considered as a possible cause of erythematous and pruritic papules and nodules of unclear origin. Not only the pets but humans are also affected by the protozoan, bacteria vectored by these fleas, like Leptomonas ctenociphali a protozoan that is related to the development of rectal ampullae (Molyneux et al., 1981).

The flea bite dermatitis was observed in workers from the power station of the Madhya Pradesh Electricity Board. Fleas were collected from affected individuals and were identified as C. canis, on the basis of morphological characteristics (Ghosh; Shrivastava and Das, 2001).
C. canis infestation was studied in goats in Nigeria (Opasina, 1983). He studied effects of fleas on hosts and their clinical reasons. The parasites of dogs were described as the potential sources of humans infection in Karachi (Bilqees and Khan, 1982). The prevalence was recorded of fleas in domestic animals and found that C. felis is most frequently found species followed by C. canis (Muller and Kutschmann, 1985).

The presence of Rickettsia felis was investigated in the cat flea from Southwestern Europe (Marquez et al., 2002). Rickettsia felis, formerly called ELB agent, was identified by using molecular biology technique in the cat flea (C. felis felis) from southwestern Spain. For the first time, this flea transmitted Rickettsia has been detected within its vector in Eurasia.

2.2 Morphological Studies

Adult dog fleas are small ($2.0-3.25 \mathrm{~mm}$), wingless, bilaterally compressed, and heavily chitinized (Bayer Environmental Science, 2000; Durden and Hinkle, 2009).

Fleas are wingless insects with a laterally compressed body of about $1.5-4 \mathrm{~mm}$ length. Body is divided into head, thorax and abdomen like other insects. Taxonomically they belong to the order Siphonaptera (Eckert et al., 2000).

Members of the Genus Ctenocephalides have genal combs and pronotal combs, large black eyes and 5-segmented labial palps (Ewing and Fox, 1943).

Although the dog and cat fleas are very similar in appearance, the comb on the ventral margin of the head, the genal ctenidium, is used to help distinguish between C. canis and the cat flea, C. felis. The size of the first two genal spines also differentiates the two species. The first (or outer) genal spine of C. canis is much shorter than the second genal spine. In C. felis, the first genal spine is as long as, or barely shorter than, the second (Fox, 1940).
C. canis has a comparatively more rounded head and about one and a half times as long as its wide, while the head of C. felis is about twice as long as its wide (Fox, 1940).
C. felis has four to five "teeth" on the tibia of all six legs, whereas the dog flea, C. canis has seven to eight teeth on the tibia of all six legs (Kramer and Mencke, 2001).

The family Pulicidae contains several species and subspecies. These species belong to the families Pulicidae, including Pulex spp., Ctenocephalides spp., Spilopsyllus spp. and Archaeopsyllus spp., or the familia Ceratophyllidae with the genus Ceratophyllus or Nosopsyllus to mention only some of the most important veterinary and human representatives. Fleas represent one of the most important ectoparasites (Mehlhorn, 2000; Mehlhorn et al., 2001).

The genital apparatus (modified abdominal segments) of fleas is described in detail in a number of studies (Rothschild and Traub, 1971). Mardon (1978) and Cheetham (1988)
have made a comparative anatomical study of the aedeagus. Scanninig electron microscopy has been used for aedeagus studying (Medvedev, 1984; Cheetham, 1988). This technique and together with light microscope were used in the comparative investigations of the aedeagus of many species of fleas (Medvedev, 1993, 1994). The aedeagus of male fleas consists of modified tergites and sternites of the 8th and 9th abdominal segments and claspers. The aedeagus and claspers derive from primary phallic lobe (Snodgrass, 1946). The modified tergites and sternites of flea's belong to abdominal segments 7-9.

Chiu-ShiauYen et al. (2001) observed microscopic views: the comparative analysis of fleas of three different species in subtropical areas. Siphonaptera were collected from Siamese cats and Pursang (Persian) cats in Taiwan. In addition, fleas were isolated from dust containing human epithelial tissue. Three host-specific fleas were isolated, one specific to the human host (Pulex irritans), one to the Pursang cat (C. felis) and one to the cats in general.

Giangaspero A. (1999) reviewed of flea infestations (C. felis, C. canis, Pulex irritans) of cats and dogs covering their morphology, biology, life cycle, pathogenic role, and transmission of disease. Taxonomic study of the genus Ctenocephalides was done by Stiles \& Collins, 1930 (Insecta: Siphonaptera: Pulicidae) by using aedeagus characters. To define more accurately the taxonomic position of the species of Ctenocephalides, a morphological study of the aedeagus was conducted 21 on all 14 described taxa (13 species and 1 subspecies) of this genus. Based on some phallosome structures (hamulus, lobes, tubus interior), an identification key is constructed to complement the existing taxonomic criteria. C. orientis (from Cambodia, China, Indonesia, Nepal and Vietnam) and C. damarensis (from South Africa) are confirmed to specific rank.

2.3 Morphological Variation Studies

The two species are usually separated according to the shape of the head, length of the first spine of the genal comb, number of bristles on the lateral metanotal area (LMA) and the number of short stout bristles in the interval between the postmedian and apical long bristles of the dorsal margin of the hind tibia (Hopkins et al., 1953; Johnson, 1957; Amin, 1976; Menier; Beaucournu, 1998; Beaucournu; Menier, 1998; Guimaraes, 2000).

Males can be further identified by the shape of the manubrium of the clasper (Holland, 1949) and the size of the hamulus on the aedeagus (Menier; Beaucournu, 1998). However, in spite of these differences, some variations in the chaetotaxy and the number of spines in the genal comb have been found (Amin, 1976; Amin et al., 1974).

In Ctenocephalides spp., the most frequent morphological variations are observed in the combs and chaetotaxies of LMA (erroneously referred to as the metepisternum by some authors) and in hind tibia (Amin et al., 1974; Amin, 1976).

Alterations in chaetotaxy on the LMA and metatibia might suggest hybridization between the two species, as previously proposed by Holland (1949), Fox (1952), Amin et al. (1974) and Amin (1976). According to Benton (1998), hybrids depend upon occurrence of two closely related species in close association, such as in fleas of the genus Ceratophyllus, 1832, which share the same bird nests in North America. However, the hypothesis of hybridization between C. felis felis and C. canis must be rejected because good species do not cross with each other, as reinforced by Beaucournu and Guiller (2006).

2.4 Prevalence Studies

In Georgia (2005), a survey of fleas on domestic dogs found C. felis was the most common species, with a prevalence of 61%. C. canis (Dryden et al., 2005)

In Virginia (1985), C. felis was the only species of flea recovered from both dogs and cats (Dryden, 1993).

In San Francisco (1960), C. felis was the just about the only species of flea recovered from both dogs and cats in animal shelters. However, a single P. irritans flea was found on a dog (Dryden, 1993).

In Aguascalientes, Mexico (2011), fleas were recovered from dogs and identified. Out of 629 fleas, 62% were C. canis and 38% were C. felis (Hernandez et al., 2011).

In Chile (2002), flea species found on dogs were 41.8% C. felis, 39.4% C. canis, and 18.8% P. irritans (Alcaino, 2002).

In Italy (2007), 960 fleas were recovered from dogs in veterinary clinics. 91.8% of the fleas were C. felis and 8.2% were C. canis (Rinaldi et al., 2007)

In Uruguay (2006), 66 fleas were identified from dogs and cats. 94% were C. felis and 6\% were C. canis (Venzal et al., 2006).

In Southwest England (1995), 93.75\% of fleas from infested cats were C. felis and 6.25% were C. canis. Fleas on infested dogs were 78.3% C. felis and 20% C. canis (Chesney, 1995).

In the United Kingdom (2005), flea infestations on cats were 98.83% C. felis, 0.21% C. canis and 0.43% P. irritans. On dogs, 93.15% of fleas were C. felis, 1.49% C. canis, and 1.49% P. irritans (Bond et al., 2007).

In Germany (2006), flea infestations on dogs were 73.2% C. felis and 17.6% C. canis. Fleas on cats were broken down into 89.8% C. felis and 7.3% C. canis. An older

German survey (2001) had similar results, with C. felis being the predominant species of both dogs and cats. (Visser et al., 2001).

In Ethiopia (2011), 82.9% of randomly examined dogs had C. felis, 73.8% had C. canis and 2.5% had P. irritans. 67% of examined cats had C. felis, 18% had C. canis and 6% had P. irritans. (Kumsa \& Mekonnen, 2011).

In Iran (2012), dogs were examined for fleas. The most prevalent species was C. canis, followed by P. irritans. No C. felis fleas were found (Jamshidi S. et al., 2012). Another survey (2010) had conflicting results, as fleas recovered from Iranian dogs were 67.5% C. felis, 12.1% C. canis and 8.4% P. irritans (Borji et al., 2011).

In Denmark (1977), C. felis was the most prevalent flea on both dogs and cats (Springer, 2001).

In Indiana (1988), 93% of flea-infested dogs had C. felis and 18% had C. canis. In infested cats, C. felis made up 97% of the fleas (Dryden, 1993).

In Taipei, Taiwan (1993), 80% of stray cats and 60% of stray dogs were infested with C. felis (Hsu \& Wu, 2001).

CHAPTER 3

MATERIALS AND METHODS

3.1 Site selection

Fleas were collected from several areas in Dhaka city, such as Central Veterinary Hospital (CVH) at Alauddin road, People for Animal Welfare (PAW) at Lalmatia, Care for Paws (CFP) at Bosila and Sher-e-Bangla Agricultural University (SAU). Both stray and pet dogs and cats were considered as study animal for the collection of fleas.

3.2 Restraining of animal

Pet dogs and cats were restrained with the help of the owners. On the other hand, stray dogs and cats, were restrained with the help of the assistant by covering the mouth with musk. Some dogs and cats, which were anaesthetized during neutering or spaying, were examined for the presence of fleas.

3.3 Sample collection and preservation

Dogs and cats of all age groups and sexes in Dhaka City were considered as study animals. Dogs and cats were exhaustively examined for fleas through an inspection of head, neck, body, sides, tail, and ventral regions of each animal. Fleas were collected by the use of forceps, and hand picking. Collected fleas were stored in collection vial with proper labeling, and using a record book for further information. Captured fleas were transported to laboratory of Microbiology \& Parasitology, Sher-e-Bangla Agricultural University, Dhaka-1207. Collected fleas were preserved in 70% ethanol for their preservation and identification based on morphological features to the species level.

3.4 Permanent slide preparation protocol for identification

Specimens were slide mounted by clearing, staining, and dehydrating before placing them in the final mounting medium.
Clearing: Fleas were cleared by dissolving in 10% Potassium Hydroxide (KOH) solution at room temperature for overnight to allow transmitted light to pass through
them. After clearing with KOH , specimens were returned to distilled water or alcohol before being passed through the alcohol series for dehydration.

Staining: Hematoxylin dye was used to stain the specimens. Specimens were kept in Hematoxylin for overnight. Hematoxylin was added to the specimens while they were in 70% alcohol. The specimen became darker and darker as time in the stain was increased. Some of the stain leached from the specimen in later stages of the dehydration series, so over staining was done to produce proper darkness of the specimen.

Dehydration and mounting: Water was removed by dehydration because water in the specimen would cloud the slide and make it difficult to see the desired characteristics as well as to prevent specimen from spoiling by bacteria. Dehydration was accomplished by passing the specimens through a series of increasingly concentrated grades of ethanol for 30 minutes in each step.

After dehydration in 100% ethanol, the specimen was soaked in xylene before mounting on slides. The amount of time spent in each step depends on the thickness of the specimen. The dehydrated specimen was observed under microscope just before mounting by Canada Balsum medium to observe whether it is cleaned. If clouding was visible, the specimen was returned to earlier stages in the dehydration series. After mounting, slides were dried very slowly by allowing them for several days. The specimens were handled with care during the mounting process. Fine forceps, needles and insect pins were used to handle the specimens during the mounting process.

3.5 Microscopic examination for morphology study

All fleas were identified microscopically at the laboratory, according to the keys and description for identification (Gil Collado, 1949; Lewis, 1993; Beaucournu and Menier, 1998; Menier and Beaucournu, 1998; Beaucournu and Launay, 1990; and Durden and Traub, 2002).

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

4.1.1 Morphology studies

A total of 15 fleas from 5 infested dogs, and 15 fleas from 6 infested cats were objected to morphological identification. Two species, C. canis and C. felis were identified.

Among 15 fleas of dogs examined, 9 and 6 were identified as C. canis and C. felis, respectively. Again, among 15 fleas of cats examined, 2 and 13 were identified as C. canis and C. felis, respectively (Table 6). Of the 11 examined C. canis, 8 (72.73%) were identified as female fleas and $3(27.27 \%$) were male fleas. Within the 19 examined C. felis, 18 (94.74%) were identified as female fleas and 1 (5.26%) was male flea (Table 8).

Typical generic morphological characteristics were found in both species. They were small (2-3mm), dark or reddish brown to black in color. The females were a bit larger than males and had a slightly different color. The species were winless insects with laterally compressed body which had glossy surface. Head contained backwardly directed rows of dark spines, ctenidia or comb, at its posterior or ventral borders. Head also contained pronotal and genal ctenidium with eight or nine spines oriented horizontally. Sternum had one or two ventral spines. Abdomen contained 10 abdominal segments; tergum of $9^{\text {th }}$ segment modified to form clasper (male). Each species had 3 pairs of legs; $3^{\text {rd }}$ pair of legs was much longer than others used for jumping. Each leg beared coxa, femur, tibia and tarsus; posterior end had pygidium and antepygidial bristles (Figure 1). The female contained spermethica as a holding organ; forehead carried maxillary palpus ventrally (Figure 2).

Figure 1: Morphology of the Genus Ctenocephalides (Male)
a) Head, b) Thorax, c) Abdomen, d) Genal comb, e) Pronatal comb, f) Eye, g) $1^{\text {st }}$ pair of legs, h) $2^{\text {nd }}$ pair of legs, i) $3^{\text {rd }}$ pair of legs (long), j) Coxa, k)Femur, 1) Tibia, m) Tarsus, n) Bristle, o) $9^{\text {th }}$ abdominal segment p) Clasper, q) Pygidium, r) Antepygidial bristles.

Figure 2: Morphology of the Genus Ctenocephalides (Female)
a) Maxillary pulpus, b) Spermatheca, c) Genal comb, d) Pronatal comb.
C. canis and C. felis were separated morphologically according to the shape of the head, sloping condition of the forehead, length of the first spine of the genal comb, number of bristles on the lateral metanotal area (LMA), the number of short stout bristles in the interval between the post-median and apical long bristles of the dorsal margin of the hind tibia, metatibial formula of chaetotaxy, shape of the manubrium of the clasper in case of male, length of hilla of spermethica in case of female.

Table 1: Differential morphological properties between C. felis and C. canis

Characteristics	C. felis	C. canis
Shape of the head	Length is generally greater than twice of the height of head (Figure 3a).	Length is not twice of the height of head. (Figure $4 \mathrm{c})$.
Length of the $1^{\text {st }}$ and $2^{\text {nd }}$ spine of genal comb	First of two spines are approximately equal in length (Figure 3b).	First spine is half as long as second spine in length (Figure 4d).
Number of bristles on the LMA or metepisternite	Two (Figure 5).	Three (Figure 6).
Number of notches on tibiae	Tibiae of all 6 legs have 5 to 6 notches (Figure 7, 9).	Tibiae of all 6 legs have 7 to 8 notches (Figure 8, 10).
Number of stout bristles on the dorsal margin of the hind tibia	One stout bristle in the interval between post-median and apical long bristles (Figure 11).	Two stout bristles in the interval between postmedian and apical long bristles (Figure 12).
Metatibial formula of chaetotaxy	2-2-2-2-1-3 (Figure 13).	2-2-2-2-2-1-1-3 (Figure 14)
Male: shape of the manubrium of the clasper	The clasper of the manubrium is not expanded apically (Figure 15)	The clasper of the manubrium is expanded apically (Figure 16)
Female: length of hilla of spermethica	Spermatheca contains short hilla (Figure 17)	Spermatheca contains comparatively long hilla (Figure 18)

Figure 3: Female of C. felis (10X). a) Shape of the head; b) Length of the $1^{\text {st }}$ and $2^{\text {nd }}$ spines of genal comb (arrow).

Figure 4: Female of C. canis (10X). c) Shape of the head; d) Length of the $1^{\text {st }}$ and $2^{\text {nd }}$ spines of genal comb (arrow).

Figure 5: Female of C. felis (10X). Number of bristles on the lateral metanotal area (LMA) or metepisternite (circle).

Figure 6: Female of C. canis (10X). Number of bristles on the lateral metanotal area (LMA) or metepisternite (circle).

Figure 7: Female of C. felis (10X). Number of notches (5) on the hind tibia (arrow).

Figure 8: Female of C. canis (10X). Number of notches (7) on the hind tibia (arrow).

Figure 9: Female of C. felis (10X). Number of notches (6) on the hind tibia (arrow).

Figure 10: Female of C. canis (10X). Number of notches (8) on the hind tibia (arrow).

Figure 11: Female of C. felis (10X). Number of stout bristles between post-median and apical long bristles of the hind tibia (circle).

Figure 12: Female of C. canis (10X). Number of stout bristles between post-median and apical long bristles of the hind tibia (circle).

Figure 13: Female of C. felis (10X). Metatibial formula of chaetotaxy.

Figure 14: Female of C. canis (10X). Metatibial formula of chaetotaxy.

Figure 15: Female of C. felis. Length of hilla of spermathica (arrow); A: Showing hilla under 10X, B: Showing hilla under 40X.

Figure 16: Female of C. canis. Length of hilla of spermathica (arrow); A: Showing hilla under 10X, B: Showing hilla under 40X.

Figure 17: Male of C. felis (10X). Shape of the manubrium of the clasper (arrow).

Figure 18: Male of C. canis (10X). Shape of the manubrium of the clasper (arrow)

4.1.2 Prevalence studies

A total of 57 dogs and 77 cats were examined for flea infestation belonging to the genus Ctenocephalides from different veterinary clinics and animal welfare associations of Dhaka City (Table 2). A total of 25 flea infested dogs and 25 flea infested cats were found from 57 dogs and 77 cats examined, respectively. In this study a higher infestation rate of flea was recorded in dogs (43.86\%) than in cats (32.47\%) (Table 2).

Higher infestation rate of flea was recorded in dogs (50%) rather than cats (24%) in the Central Veterinary Hospital (CVH). The prevalence of flea was observed in dogs (42.86%) and cats (34.09%) in the veterinary clinics of People for Animal Welfare (PAW) at Lalmatia (Table 3).

Among the 57 dogs, 42% (24/57) were female, while 58% (33/57) were male and among the 77 cats, 60% (46/77) were female, while 40% (31/77) were female (Table 4).

A significant difference was observed in the infestation rate of flea infestation between young (48.28%) and adult (39.29%) dogs. In case of cat, 34.62% young and 31.37% adult were found to be infested by fleas (Table 5).

Again, among the 57 dogs, 63% (36/57) were stray dogs, while 37% (21/57) were pet dogs. Among 77 cats, 31% (24/77) were stray cats, while 69% (53/77) were pet cats. Higher prevalence of fleas was observed in stray dogs (61.11\%) and stray cats (79.17\%) than pet dogs (14.29%) and pet cats (11.32%) in Dhaka City (Table 6).

A total of 15 fleas were identified from dogs which contained 9 C. canis (60%) and 6 C. felis (40\%). Among identified 15 fleas collected from cat, there were 13 C. felis (86.67%) and 2 C. canis (13.33%). The prevalence rate of cross infestation was higher in dogs than that in cats (Table 7).

Table 2: Overall number of animals was examined for flea infestation

Animal	Animal infested (\%)
Dog (n=57)	$25(43.86)$
Cat $(\mathrm{n}=77)$	$25(32.47)$
Total (134)	$50(37.31)$

Table 3: Comparison of the overall number of examined animals according to collection site

Location	Animal	Animal infested (\%)
Central Veterinary Hospital Dog (n=18) $9(50)$ (CVH) Cat $(\mathrm{n}=25)$ $6(24)$ People for Animal Welfare $\operatorname{Dog}(\mathrm{n}=35)$ $15(42.86)$ (PAW) $\operatorname{Cat}(\mathrm{n}=44)$ $15(34.09)$ Sher-e-Bangla Agricultural $\operatorname{Dog}(\mathrm{n}=1)$ - University (SAU) $\operatorname{Cat}(\mathrm{n}=6)$ $3(50)$ Care for Paws (CFP) $\operatorname{Dog}(\mathrm{n}=4)$ $2(50)$ $\operatorname{Cat}(\mathrm{n}=1)$ - Total (134) $50(37.31)$		

Table 4: Comparison of the overall number of infested animal according to their sex

Animal	Sex	Animal infested (\%)
Dog	Male (n=33)	$14(42.42)$
	Female (n=24)	$11(45.83)$
Total	(57)	$25(43.86)$
Cat	Male (n=31)	$10(32.26)$
	Female (n=47)	$15(32.61)$
Total	(77)	$25(32.47)$

Table 5: Comparison of the overall flea infested young and adult animals

Animal	Age	Animal infested (\%)
Dog	Young	$14(48.28)$
	Adult	
	$(>1$ year=29)	$11(39.29)$
Total	(57)	$25(43.86)$
Cat	Young	$9(34.62)$
	$(<9$ months=26)	
	Adult	$16(31.37)$
	$(>9$ months=51)	$25(32.47)$
Total	(77)	

Table 6: Comparison of the overall number of the flea infested stray and pet animals

Animal	Stray animals	Animal infested (\%)	Pet animals	Animal infested (\%)
Dog	36	$22(61.11)$	21	$3(14.29)$
Cat	24	$19(79.17)$	53	$6(11.32)$
Total	60	$41(68.33)$	74	$9(12.16)$

Table 7: Number of cross infestation of flea between dog and cat

Animal	No. of	C. canis	Abundance $(\%)$	C. felis	Abundance
	Examined			$(\%)$	
	fleas		(60)	6	(40)
Dog	15	9	(13.33)	13	(86.67)
Cat	15	2			

Table 8: Comparison of the overall number of fleas examined according to their sex

Flea	No. of fleas examined	Female	Abundance $(\%)$	Male	Abundance $(\%)$
C. Canis	11	8	(72.73)	3	(27.27)
C. felis	19	18	(94.74)	1	(5.26)

4.2 DISCUSSION

Flea infested dogs and cats were found from the examined 57 dogs and 77 cats respectively, belonging to the genus Ctenocephalides from different localities of Dhaka City. In the present study two species of Ctenocephalides Including C. felis and C. canis under the family Pulicidae were found in both dogs and cats. The length of the head of C. felis was twice longer than wide. Genal ctenidium presenting the first spine was approximately as long as the second one. All the individuals of this species presented one single short and stout spine close to short setae and located typically between the postmedial and apical long bristles, and five to six seta-bearing notches was found along the dorsal margin. This fact was found by Linardi and Santos (2012). Presence of two bristles was observed in the metepisternite or LMA. Typical spermatheca with a short apical part of hilla was observed in the posterior end of female. The manubrium of the clasper was dilated towards its apex in case of male individuals.

The population of C. canis was observed on dogs and cats from all the geographical localities of Dhaka City. The individuals presented typical characteristics of this species: head strongly convex anteriorly in both sexes and not noticeably elongate; the length of the head was not twice longer than wide. Genal ctenidium presenting the first spine was approximately shorter than the second one. Three spines were observed in the metepisternite or LMA in all the individuals. Hind tibia with seven to eight seta-bearing notches along the dorsal margin and presence of two single, short and stout bristles located between the postmedial and apical long bristles were found in hind tibia. The manubrium of the clasper was dilated towards its apex in case of male individuals. Typical spermatheca with apical part of elongated hilla was observed in the posterior end of females. These aboved mentioned morphological characteristics were agreed with those cited by Gil Collado (1949), Lewis (1993), Beaucournu and Menier (1998), Menier and Beaucournu (1998), Beaucournu and Launay (1990), and Durden and Traub (2002).

However, the degree of dilation of the apex and the degree of elongation of the apical part (hilla) of the spermatheca was the most differential character between both species what was in agreement with Menier and Beaucournu (1998) and Lewis (1993),
respectively. The length observed between the first and the second genal spines was the most specific biometrical parameter observed between both species and it was in agreement to Gil Collado (1960). Furthermore, and in accordance with Durden and Traub (2002), the length and wide ratio of the head was a specific parameter to differentiate C. felis and C. canis.

In this study, an overall high prevalence of flea was recorded in both dogs (43.86%) and cats (32.47%) in Dhaka City. This high prevalence suggests that these fleas are very common, and present major problems with regard to the health, and performances of these important animals in the study area. Higher prevalence of fleas was observed in dogs than that in cats, which may be due to more efficient grooming behavior of cats (Eckstein and Hart, 2000). Higher prevalence of fleas in stray dogs and cats than pet dogs and cats in Dhaka City, which confirms to the previous study (Hsu \& Wu, 2001) where it was reported that 80% of stray cats and 60% of stray dogs were infested with C. felis in Taipei, Taiwan. Lower prevalence of fleas was recorded in pet dogs and cats may be due to proper supportive care and management by their owners.
C. felis was identified as the most common ectoparasite in both animal groups. This finding is in line with earlier reports from Ethiopia (Melkamu 2008; Yonas 2008) as well as elsewhere in the world (Alcaino et al., 2002; Aldemir, 2007; Beck et al., 2006; Canon-Franco \& Perez-Bedoya, 2010; Gonzalez, Castro \& Gonzalez, 2004; Gracia et al., 2008; Rinaldi et al., 2007). C. canis was identified as the second most common ectoparasite species in both host groups, which also agrees with the earlier mentioned reports. Higher prevalence of flea infestations in young cats may be due to confinement to houses, therefore, having greater exposure to ectoparasites infestation like fleas, as well as less efficient grooming behavior than adult cats (Eckstein \& Hart, 2000).

The prevalence amongst animals, more female fleas was recorded on animals in this study. The most probable reason for this is that female individuals usually have a longer lifespan than the male individuals. Male individuals also spend more time off the host and are therefore more prone to predation or starvation than female individuals (Durden et al. 2005).

CHAPTER 5

SUMMARY AND CONCLUSION

This study was performed in the Dhaka city aim to find out the prevalence and morphological identification of the fleas of the genus Ctenocephalides including C. canis and C. felis from dogs and cats. A higher prevalence rate of flea was recorded in dogs (43.86%) than in cats (32.47%). The higher prevalence of fleas in dogs than that in cats in this study may reflect more efficient grooming behavior of cats. The prevalence rate of fleas was higher in stray dogs (61.11%) and cats (79.19%) , than that in pet dogs (14.29\%) and cats (11.32\%). The prevalence rate of fleas was higher in young animal than adult. Among 30 fleas which were identified, the female fleas (86.67%) were higher than male fleas (13.33\%) of the Genus Ctenocephalides. The prevalence rate of cross infestation was higher in dogs (C. felis, 40\%) than that in cats (C. canis, 13.33\%). Fleas are clinically important ectoparasites for animal and human health since they may play a role as parasites by themselves causing allergic dermatitis or other conditions. Sometimes they serve as vectors and transmitting important disease causing pathogens. The information presented here improves our understanding of flea infestation. In order to avoid any unpleasant situations adequate preparations of flea control should be implemented in Dhaka city and other parts of Bangladesh.

REFERENCES

Amin O.M. (1966). The fleas (Siphonaptera) of Egypt: distribution and seasonal dynamics of fleas infesting dogs in the Nile valley and delta. Journal of Medical Entomology; 3(3): 293-298.

Amin O.M., Wells T.R., Gately H.L. (1974). Comb variations in the cat flea, Ctenocephalides felis. Annals of the Entomological Society of America; 67(6): 831-834.

Amin O.M. (1976). Host associations and seasonal occurrence of fleas from Southeastern Wisconsin mammals with observations on morphologic variations. Journal of Medical Entomology; 13(2): 179-192.

Amin O.M., Sewell R.G. (1977). Comb variations in the squirrel and chipmunk fleas, Orchopeas h. howardii (Baker) and Megabothris acerbus (Jordan) (Siphonaptera), with notes on the significance of pronotal comb patterns. The American Midland Naturalist; 98(1): 207-212.

Alcaino H.A., Gorman T.R., Alcaino R. (2002). Flea species from dogs in three cities of Chile. Veterinary Parasitology; 105: 261-265.

Baker K.P., Hatch C. (1972). The species of fleas found on Dublin dogs. TheVeterinary Record; 91(6): 151-152.

Beresford-Jones W.P. (1981). Prevalence of fleas on dogs and cats in an area of central London. The Journal of Small Animal Practice; 22(1): 27-29.

Beard C.B., Butler J.F., Hall D.W. (1990). Prevalence and biology of endosymbionts of fleas (Siphonaptera: Pulicidae) from dogs and cats in Alachua County, Florida. Journal of Medical Entomology; 27(6): 1050-1061.

Benton A.H. (1998). Hybridization in North American bird fleas of the genus Ceratophyllus (Siphonaptera: Ceratophyllidae). Journal of Medical Entomology; 35(4): 433-434.

Bond, R., Riddle, A., Mottram, L., Beugnet, F., Stevenson, R. (2007). Survey of flea infestation in dogs and cats in the United Kingdom during 2005.The Veterinary Record; 160: 503-506.

Bitam I., Parola P., De La Cruz K.D., Matsumoto K., Baziz B., Rolain J.M., Belkaid M., Raoult D., (2010). Fleas and flea-borne diseases. International Journal for Infectious Diseases; 14:667-676.

Borji H., Razmi G., Ahmadi A., Karami H.,Yaghfoori S., Abedi V. (2011). A survey on endoparasites and ectoparasites of stray cats from Mashhad (Iran) and association with risk factors. Journal of Parasitic Diseases; 35: 202-206.

Chesney C.J. (1995) Species of flea found on cats and dogs in south west England: further evidence of their polyxenous state and implications for flea control. The Veterinary Record; 136(14):356-358.

Dryden M. W (1993). Biology of Fleas of Dogs and Cats. The Compendium on Continuing Education for the Practicing Veterinarian; 15: 569-578.

Durden L.A., Traub R. (2002).Medical and Veterinary Entomology, vol. 7. Academic, San Diego, 103-125.
Durden L. A., Judy T. N., Martin J. E., Spedding L. S. (2005). Fleas parasitizing domestic dogs in Georgia, USA: species composition and seasonal abundance. Veterinary Parasitology; 130: 157-162.

De Avelar D.M., Bussolotti A.S., Ramos M.C.A., Linardi P.M. (2007). Endosymbionts of Ctenocephalides felis felis (Siphonaptera: Pulicidae) obtained from dogs captured in Belo Horizonte, Minas Gerais, Brazil. The Journal of Invertebrate Pathology; 94(2): 149-152.

Durden L.A., Hinkle N.C. (2009). Fleas (Siphonaptera). In: Mullen GR, Durden LA (eds) Medical and Veterinary Entomology, 2nd edn. Academic, San Diego, 115135.

Eckstein R.A.,Hart B.L. (2000). Grooming and control of fleas in cats. Applied Animal Behavior Science; 68: 141-150.

Fox I. (1952). Notes on the cat flea in Puerto Rico. The American Journal of Tropical Medecine and Hygiene; 2(2): 337-342.

Gracia M.J., Calvete C., Estrada R., Casllo J.A., Peribanez M.A., Lucientes J. (2008).Fleas parasitizing domestic dogs in Spain. Veterinary Parasitology; 151: 312-319.

Hsu M. H. \& Wu W. J. (2001). Off-host observations of mating and postmating behaviors in the cat flea (Siphonaptera: Pulicidae). Journal of Medical Entomology; 38: 352-360.

Hernandez-Valdivia E., Cruz-Vazquez C., Ortiz-Martanez R., Valdivia-Flores A. \& Quintero-Martinez M. T. (2011). Presence of Ctenocephalides canis (Curtis) and Ctenocephalides felis infesting dogs in the city of Aguascalientes, Mexico. Journal of Parasitology; 97: 1017-1019.

Jamshidi S. Maazi N., Hosseini(2012). A survey of ectoparasite infestation in dogs in Tehran, Iran. Brazilian Journal of Veterinary Parasitology; 21: 326-329.

Kumsa, B. E., Mekonnen, S. (2011). Ixodid ticks, fleas and lice infesting dogs and cats in Hawassa, southern Ethiopia. TheOnderstepoort Journal of Veterinary Research; 78: 326.

Lewis R.E. (1972). Notes on the geographical distribution and host preferences in the order Siphonaptera. Medical and Veterinary Entomology; 9:511-520.

Lewis R.E. (1993). Notes on the geographical distribution and host preferences in the order Siphonaptera. Part 8. New taxa described between 1984 and 1990, with a current classification of the order. Annals of the Entomological Society of America; 30:239-256.

Linardi P.M., Santos J.L.C. (2012). Ctenocephalides felis felis vs Ctenocephalides canis (Siphonaptera: Pulicidae): some issues in correctly identify these species. Brazilian Journal of Veterinary Parasitology; 4:345-354.

Lawrence A., FuiHii S., Jirsova D., Panakova L., Lonica M., Gilchrist K., Modry D., Cameron E., Traub J., Slapeta J. (2015). Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe. Brazilian Journal of Veterinary Parasitology; 210(3-4), 215-223.

Menier K., Beaucournu J.C. (1998). Taxonomic study of the genus CtenocephalidesStiles \& Collins, 1930 (Insecta: Siphonaptera: Pulicidae) by using aedeagus characters. Medical and Veterinary Entomology; 35:883-890.

Moriello K.A. (2003). Zoonotic skin diseases of dogs and cats. Animal Health Research Reviews; 4: 157-168.

Marrugal A., Callejon R., Rojas M., Halajian A., Cutillas C. (2013). Morphological, biometrical, and molecular characterizationof Ctenocephalides felis and Ctenocephalides canis isolatedfrom dogs from different geographical regions. African Parasitology Research; 112:2289-2298.

Rothschild M. (1975). Recent advances in our knowledge of the order Siphonaptera. Annual Reveiw Entomology; 20:241-259.

Rust M.K., Dryden M.W., (1997). The biology, ecology, and management of the cat flea. Annual Review of Entomology; 42: 451-473.

Rinaldi, L. et al. (2007). A survey of fleas on dogs in southern Italy. Veterinary Parasitology; 148, 375-378.

Soulsby E.J.L. (1982). Helminths, Arthropods and Protozoans of Domesticated Animals, 7th edn., Baillienmire Jindan, London.

Samad M.A. (2000). An overview of livestock research reports published during the twentieth century in Bangladesh. Bangladesh Veterinary Journal; 34: 53-149.

Tavassoli M., Ahmadi A., Imani A., Ahmadiara E., Javadi S., Hadian M. (2010). Survey of Flea Infestation in Dogs in Different Geographical Regions of Iran. The Korean Journal of Parasitology; 48(2): 145-149.

Visser, M., Rehbein, S. \& Wiedemann, C. (2001). Species of flea (siphonaptera) infesting pets and hedgehogs in Germany. Journal of Veterinary Medicine. B, Infectious Diseases and Veterinary Public Health; 48: 197-202.

Venzal, J. M., Perez-Martinez L., Portillo A., Blanco J.R., Felix M.L. (2006). Prevalence of Rickettsia felis in Ctenocephalides felis and Ctenocephalides canis from Uruguay. Annals of the New York Academy of Sciences; 1078: 305-308.

