YIELD AND QUALITY OF GROUNDNUT SEED AS INFLUENCED BY LIGHT AND BORON

MD. QUAMRUZZAMAN

DEPARTMENT OF AGRONOMY

SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207

JUNE, 2015

YIELD AND QUALITY OF GROUNDNUT SEED AS INFLUENCED BY LIGHT AND BORON

By

MD. QUAMRUZZAMAN REGISTRATION NO. 09-03439

A Thesis

Submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN AGRONOMY

SEMESTER: JANUARY-JUNE, 2015

Approved by:

(**Prof. Dr. Md. Jafar Ullah**) Supervisor (Prof. Dr. Md. Fazlul Karim) Co-Supervisor

(Prof. Dr. Md. Fazlul Karim)

Chairman Examination Committee

CERTIFICATE

This is to certify that the thesis entitled **"Yield and Quality of Groundnut Seed as Influenced by Light and Boron"** submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of **MASTER OF SCIENCE (M.S.)** in **AGRONOMY**, embodies the results of a piece of *bona fide* research work carried out by **Md. Quamruzzaman**, Registration. No. **09-03439** under my supervision and guidance. No part of this thesis has been submitted for any other degree or diploma.

I further certify that such help or source of information as has been availed of during the course of this investigation has duly been acknowledged.

SHER-E-BANGLA AGRICULTURAL UNIVERSITY

Dated:

Place: Dhaka, Bangladesh

(Prof. Dr. Md. Jafar Ullah) Supervisor

LIST OF ACRONYMS

Abbreviation	Full word
AEZ	Agro Ecological Zone
AOAC	Analyses of Association of Analytical Chemist
BARC	Bangladesh Agricultural Research Council
BARI	Bangladesh Agricultural Research Institute
BBS	Bangladesh Bureau of Statistics
BCSIR	Bangladesh Council of Scientific and Industrial Research
CV	Coefficient of Variance
DAP	Days After Planting
meq	Milli-equivalent
NS	Non-Significant
SE	Standard Error
SRDI	Soil Resource Development Institute
USDA	United States Department of Agriculture

ACKNOWLEDGEMENTS

All praises are due to the Almighty Allah, the great, the gracious, merciful and supreme ruler of the universe to complete the research work and thesis successfully for the degree of Master of Science (M.S.) in Agronomy.

The author expresses the deepest sense of gratitude, sincere appreciation and heartfelt indebtedness to his reverend research supervisor **Dr. Md. Jafar Ullah**, Professor, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka for his scholastic guidance, innovative suggestion, constant supervision and inspiration, valuable advice and helpful criticism in carrying out the research work and preparation of this manuscript.

The author deems it a proud privilege to acknowledge his gratefulness, boundless gratitude and best regards to his respectable co-supervisor **Dr. Md. Fazlul Karim**, Professor, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka for his valuable advice, constructive criticism and factual comments in upgrading the research work and this documents.

The author would like to express his deepest respect and boundless gratitude to all the respected teachers of the Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, for their valuable teaching, sympathetic co-operation, and inspirations throughout the course of this study and research work.

The author feel proud of expressing my sincere appreciation and gratitude to Minister of Science and Technology, The People's Republic of Bangladesh for providing me a National Science and Technology (NST) fellowship.

The author wishes to extend his special thanks to Dr. Md. Jahedur Rahman for his help during experimentation. Special thanks to all of my friends for their support and encouragement to complete this study. The authors are also thankful to Shabiha Sultana, Deputy Director (Budget), Sher-e-Bangla Agricultural University, Dhaka, Bangladesh for helping to arrange initial fund and support for the experimental filed arrangement.

The author is deeply indebted to his father and grateful to his respectful mother, brother and other relative's for their moral support, encouragement and love with cordial understanding.

Finally, the author appreciates the assistance rendered by the staff members of the Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, who have helped during the period of study.

LIST OF CONTENTS

CHAPTER	TITLE	PAGE
	LIST OF ACRONYMS AND ABBREVIATIONS	i
	ACKNOWLEDGEMENTS	ii
	LIST OF CONTENTS	iii-vii
	LIST OF TABLES	viii-ix
	LIST OF FIGURES	Х
	LIST OF APPENDICES	xi
	LIST OF PLANTES	xii
	ABSTRACT	xiii
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3-9
2.1	Effect of boron and light	3
2.1.1	Growth parameters	3
2.1.1.1	Days to emergence	3
2.1.1.2	Days to flowering	3
2.1.1.3	Plant height	3
2.1.1.4	Leaf area	4
2.1.2	Yield and Yield contributing characters	4
2.1.2.1	Number of branches	4
2.1.2.2	Shoot dry weight	4
2.1.2.3	Number of flowers	5
2.1.2.4	Number of pegs	5
2.1.2.5	Number of pods	5
2.1.2.6	Pods dry weight	6
2.1.2.7	The 100 seed weight	6
2.1.2.8	Shelling percentage	6
2.1.2.9	Pod yield	7
2.1.2.10	Seed yield	7
2.1.2.11	Stover yield	8
2.1.3	Quality contributing characters	8
2.1.3.1	Protein content	8
2.1.3.2	Oil content	8
2.1.3.3	Vitamin E content	9
2.1.3.4	Germination percentage	9
3	MATERIALS AND METHODS	10-16
3.1	Description of the experimental site	10
3.1.1	Location	10
3.1.2	Soil	10
3.1.3	Climate	10
3.2	Crops	11
3.3	Experimental treatment	11
3.4	Details of the field operation	11
3.4.1	Land preparation	11
3.4.2	Experimental design	12
3.4.3	Light structure	12
3.4.4	Fertilizer application	12

CHAPTER	TITLE	PAGE
3.4.5	Collection of seeds	12
3.4.6	Test for seed germination	12
3.4.7	Sowing of seeds	13
3.4.8	Intercultural operations	13
3.4.8.1	Irrigation	13
3.4.8.2	Weeding and earthing up	13
3.4.8.3	Disease and insect control	13
3.4.9	Harvesting	13
3.5	Parameter studies	14
3.5.1	Growth parameter	14
3.5.2	Yield and yield contributing characters	14
3.5.3	Quality contributing characters	14
3.6	Procedures of data collection	14
3.6.1	Growth Parameter	14
3.6.1.1	Days to emergence	14
3.6.1.2	Days to flowering	14
3.6.1.3	Plant height	14
3.6.1.4	Leaf area	15
3.6.2	Yield and yield components	15
3.6.2.1	Number of branches	15
3.6.2.2	Shoot dry weight	15
3.6.2.3	Number of flowers	15
3.6.2.4	Number of pegs	15
3.6.2.5	Number of pods	15
3.6.2.6	Pod dry weight	15
3.6.2.7	100-seed weight	15
3.6.2.8	Shelling percentage	15
3.6.2.9	Pod yield	16
3.6.2.10	Seed yield	16
3.6.2.11	Stover yield	16
3.6.3	Quality parameters	16
3.6.3.1	Protein content	16 16
3.6.3.2 3.6.3.3	Oil content Vitamin E content	16 16
		16 16
3.6.3.4 3.7	Germination percentage	16 16
3.7 4	Statistical analysis RESULTS AND DISCUSSION	10 17-74
4 4.1	Effect of boron and light on growth of groundnut	17-74
4.1.1 4.1.1	Days to emergence	17-23 17
4.1.1.1	Effect of boron and variety	17
4.1.1.2	Effect of boron-variety interaction	18
4.1.2	Day to flowering	18
4.1.2.1	Effect of boron and variety	18
4.1.2.2	Effect of boron-variety interaction	19
4.1.3	Plant height (cm)	20

CHAPTER	TITLE	PAGE
4.1.3.1	Effect of light	20
4.1.3.2	Effect of boron	20
4.1.3.3	Effect of variety	20
4.1.3.4	Effect of boron-variety interaction	21
4.1.3.5	Interaction effect of light, boron and variety	22
4.1.4	Leaf Area (cm ²)	23
4.1.4.1	Effect of light	23
4.1.4.2	Effect of boron	23
4.1.4.3	Effect of variety	24
4.1.4.4	Effect of boron-variety interaction	24
4.1.4.5	Interaction effect of light, boron and variety	25
4.2	Effect of boron and light on yield and yield attributes of	26-58
	groundnut	
4.2.1	Number of branches	26
4.2.1.1	Effect of light	26
4.2.1.2	Effect of boron	26
4.2.1.3	Effect of variety	27
4.2.1.4	Effect of boron-variety interaction	27
4.2.1.5	Interaction effect of light, boron and variety	28
4.2.2	Shoot dry weight (g)	29
4.2.2.1	Effect of boron	29
4.2.2.2	Effect of light	29
4.2.2.3	Effect of variety	30
4.2.2.4	Effect of boron-variety interaction	31
4.2.2.5	Interaction effect of light, boron and variety	31
4.2.3	Number of flowers	32
4.2.3.1	Effect of light	32
4.2.3.2	Effect of boron	32
4.2.3.3	Effect of variety	33
4.2.3.4	Effect of boron-variety interaction	34
4.2.3.5	Interaction effect of light, boron and variety	34 35
4.2.4	Number of pegs	35 35
4.2.4.1	Effect of light Effect of boron	35 35
4.2.4.2 4.2.4.3	Effect of variety	35 36
4.2.4.3	Effect of boron-variety interaction	36
4.2.4.5	Interaction effect of light, boron and variety	30 37
4.2.5	Number of pods	38
4.2.5.1	Effect of light	38
4.2.5.2	Effect of boron	38
4.2.5.3	Effect of variety	39
4.2.5.4	Effect of boron-variety interaction	39
4.2.5.5	Interaction effect of light, boron and variety	40
4.2.6	Pods dry weight (g)	41
4.2.6.1	Effect of light	41

CHAPTER	TITLE	PAGE
4.2.6.2	Effect of boron	41
4.2.6.3	Effect of variety	42
4.2.6.4	Effect of boron-variety interaction	42
4.2.6.5	Interaction effect of light, boron and variety	43
4.2.7	The hundred seeds weight (g)	44
4.2.7.1	Effect of light	44
4.2.7.2	Effect of boron	44
4.2.7.3	Effect of variety	45
4.2.7.4	Effect of boron-variety interaction	46
4.2.7.5	Interaction effect of light, boron and variety	46
4.2.8	Shelling percentage	47
4.2.8.1	Effect of light	47
4.2.8.2	Effect of boron	47
4.2.8.3	Effect of variety	48
4.2.8.4	Effect of boron-variety interaction	48
4.2.8.5	Interaction effect of light, boron and variety	49
4.2.9	Pod yield (t/ha)	50
4.2.10.1	Effect of light	50
4.2.9.2	Effect of boron	50
4.2.9.3	Effect of variety	51
4.2.9.4	Effect of boron-variety interaction	51
4.2.9.5	Interaction effect of light, boron and variety	52
4.2.10	Seed yield (t/ha)	53
4.2.9.1	Effect of light	53
4.2.10.2	Effect of boron	53
4.2.10.3	Effect of variety	54
4.2.10.4	Effect of boron-variety interaction	54
4.2.10.5	Interaction effect of light, boron and variety	55
4.2.11	Stover yield (t/ha)	56
4.2.11.1	Effect of light	56
4.2.11.2	Effect of boron	56
4.2.11.3	Effect of variety	57
4.2.11.4	Effect of boron-variety interaction	57
4.2.11.5	Interaction effect of light, boron and variety	58
4.3	Coefficient of determination	59-60
4.4	Effect of light and boron on the quality attributes of	61-73
	groundnut	
4.4.1	Seed protein content (%)	61
4.4.1.1	Effect of light	61
4.4.1.2	Effect of boron	61
4.4.1.3	Effect of variety	61
4.4.1.4	Effect of boron-variety interaction	62
4.4.1.5	Interaction effect of light, boron and variety	63
4.4.2	Oil content (%)	64
4.4.2.1	Effect of light	64

CHAPTER	TITLE	PAGE
4.4.2.2	Effect of boron	64
4.4.2.3	Effect of variety	65
4.4.2.4	Effect of boron-variety interaction	65
4.4.2.5	Interaction effect of light, boron and variety	66
4.4.3	Vitamin E content (mg/100 seed)	67
4.4.3.1	Effect of light	67
4.4.3.2	Effect of boron	68
4.4.3.3	Effect of variety	68
4.4.3.4	Effect of boron-variety interaction	69
4.4.3.5	Interaction effect of light, boron and variety	70
4.4.4	Germination percentage	71
4.4.4.1	Effect of light	71
4.4.4.2	Effect of boron	71
4.4.4.3	Effect of variety	72
4.4.4.4	Effect of boron-variety interaction	72
4.4.4.5	Interaction effect of light, boron and variety	73
5	SUMMARY AND CONCLUSION	75-77
	REFERENCES	78-83
	APPENDICES	84-89
	PLATES	90-96

LIST OF TABLES

TABLE	TITLE	PAGE
1	Effect of boron-variety interaction on days to emergence of	18 18
Ŧ	groundnut	
2	Effect boron-variety interaction on days to flowering of groundnut	20
3	Effect of boron-variety interaction on plant height of groundnut	22
4	Interaction effect of light, boron and variety on plant height of groundnut	23
5	Effect of boron-variety interaction on leaf area of groundnut	25
6	Interaction effect of light-boron-variety on leaf area of groundnut	26
7	Effect of boron-variety interaction on number of branches plant ⁻¹ of groundnut	28
8	Interaction effect of light-boron-variety on number of branches plant ⁻¹ in groundnut	29
9	Effect of boron-variety interaction on shoot dry weight of groundnut	31
10	Interaction effect of light-boron-variety on shoot dry weight of groundnut	32
11	Effect of boron-variety interaction on the number of flowers plant ⁻¹ of groundnut	34
12	Interaction effect of light-boron-variety on number of flowers plant ⁻¹ in groundnut	35
13	Effect of boron-variety interaction on the number of pegs plant ⁻¹ of groundnut	37
14	Interaction effect of light-boron-variety on the number of pegs plant ⁻¹ of groundnut	38
15	Effect of boron-variety interaction on the number of pods plant ⁻¹ of groundnut	40
16	Interaction effect of light-boron-variety on the number of pods plant ⁻¹ of groundnut	41
17	Effect of boron-variety interaction on pod dry weight plant ⁻¹ of groundnut	43
18	Interaction effect of light-boron-variety on pod dry weight plant ⁻¹ of groundnut	44
19	Effect of boron-variety interaction on 100 seed weight of groundnut	46
20	Interaction effect of light-boron-variety interaction on 100 seed weight in groundnut	47
21	Effect of boron-variety interaction on shelling percentage of groundnut	49
22	Interaction effect of light-boron-variety on shelling percentage of groundnut	50
23	Effect of boron-variety interaction on total pod yield of groundnut	52
24	Interaction effect of light-boron-variety on total pod yield of groundnut	53

LIST OF TABLES (Cont'd)

TABLE	TITLE	PAGE
25	Effect of boron-variety interaction on seed yield of groundnut	55
26	Interaction effect of light, boron and variety on seed yield of groundnut	56
27	Effect of boron-variety interaction on stover yield of groundnut	58
28	Interaction effect of light-boron-variety on stover yield of groundnut	58
29	Effect of boron-variety interaction on seed protein content of groundnut	63
30	Interaction effect of light, boron and variety on seed protein content of groundnut	64
31	Effect of boron-variety interaction on seed oil content in groundnut	66
32	Interaction effect of light-boron-variety on seed oil content of groundnut	67
33	Effect of boron-variety interaction on vitamin E content of groundnut	70
34	Interaction effect of light, boron and variety on vitamin E content of groundnut	71
35	Effect of boron-variety interaction on seed germination of groundnut	73
36	Interaction effect of light, boron and variety on seed germination of groundnut	74

LIST OF FIGURES

FIGURE	TITLE	PAGE
1	Effect of boron on days to emergence of two groundnut	17
	varieties	
2	Effect of boron on days to flowering of two groundnut varieties	19
3	Effect of boron and light on plant height of two groundnut	21
4	varieties	24
4 5	Effect of boron and light on leaf area of two groundnut varieties Effect of boron and light on number of branches plant ⁻¹ of two	24 27
3	groundnut varieties	21
6	Effect of boron and light on shoot dry weight (g) plant ⁻¹ of two	30
-	groundnut varieties	
7	Effect of boron and light on number of flowers plant ⁻¹ of two	33
	groundnut varieties	
8	Effect of boron and light on number of pegs plant ⁻¹ of two	36
0	groundnut varieties	20
9	Effect of boron and light on number of pods plant ⁻¹ of two	39
10	groundnut varieties	42
10	Effect of boron and light on pod dry weight plant ⁻¹ of two groundnut varieties	42
11	Effect of boron and light on 100 seed weight of two groundnut	45
	varieties	
12	Effect of boron and light on shelling percentage of two	48
	groundnut varieties	
13	Effect of boron and light on total pod yield of two groundnut	51
14	varieties	E 4
14	Effect of boron and light on seed yield of two groundnut varieties	54
15	Effect of boron and light on stover yield of two groundnut	57
10	varieties	01
16	Relationship between days to 1 st emergence and 1 st flowering	59
	on yield of groundnut	
17	Relationship between days to 50% flowering & number of	59
10	branches plant ⁻¹ at 30 DAP on yield of groundnut	<u>(</u>)
18	Relationship between number of branches plant ⁻¹ at 60 DAP & number of branches plant ⁻¹ at 00 DAP on yield of groundput	60
19	number of branches plant ⁻¹ at 90 DAP on yield of groundnut Relationship between number of branches plant ⁻¹ during harvest	60
17	on yield of groundnut	50
20	Effect of boron and light on seed protein content of two	62
	groundnut varieties	
21	Effect of boron and light on seed oil content of two groundnut	65
	varieties	50
22	Effect of boron and light on vitamin E content of two groundnut	59
23	varieties Effect of boron and light on germination percentage of two	72
43	groundnut varieties	12
	Stoundhut fulleties	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
I	Soil test result of the experimental filed reported by Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka	84
П	Monthly record of air temperature, relative humidity and rainfall of the experimental site during the period of March, 2014 to July 2014	84
III	Effect of boron on days to emergence and days to flowering of two groundnut varieties	84
IV	Effect of light and boron on plant height of two groundnut varieties	85
V	Effect of light and boron on leaf area of two groundnut varieties	85
VI	Effect of light and boron on number of branches plant ⁻¹ of two groundnut varieties	86
VII	Effect of light and boron on shoot dry weight plant ⁻¹ (g) of two groundnut varieties	86
VII	Effect of light and boron on number of flowers plant ⁻¹ of two groundnut varieties	87
IX	Effect of light and boron on number of pegs plant ⁻¹ of two groundnut varieties	87
X	Effect of light and boron on number of pods plant ⁻¹ of two groundnut varieties	88
XI	Effect of light and boron on pods dry weight plant ⁻¹ (g) of two groundnut varieties	88
XII	Effect of light and boron on 100 seed weight (g), shelling percentage, yield (t/ha), seed yield (t/ha) and stover yield (t/ha) of two groundnut varieties	89
XIII	Effect of light and boron on protein content (%), oil content (%), vitamin E content (mg/100 g seed) and germination (%) of two groundnut varieties	89

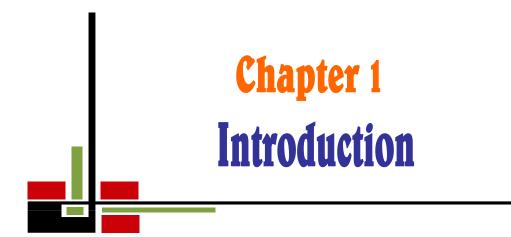

LIST OF PLATES

PLATE	TITLE	PAGE
1	Field view of experimental field	90
2	Comparison of plant height among the treatment interactions	91
3	Harvested groundnut	92
4	Comparison of pods plant ⁻¹ among the treatment interactions	93
4.1	Comparison of pods plant ⁻¹ among the treatment interactions	94
5	Comparison of germination percentage among the treatment interactions	95
5.1	Comparison of germination percentage among the treatment interactions	96

YIELD AND QUALITY OF GROUNDNUT SEED AS INFLUENCED BY LIGHT AND BORON

ABSTARCT

Boron is an important micronutrient that enhances vegetative and reproductive growth as well as yield and quality of crops, like groundnut. Light also plays an important role for pegging of groundnut. There has been little information on the application of boron and light in groundnut in Bangladesh. Therefore, a field experiment was conducted to study the effects of light and boron on the yield and quality of groundnut at the central experimental farm, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh during March to July, 2014. Treatments consisted of two groundnut varieties (V1 =Dhaka 1 and V_2 = BARI Chinabadam 8), three levels of boron (B_0 = Control, B_1 = 1kg boron ha⁻¹ and $B_2 = 2$ -kg boron ha⁻¹), and two levels of light, viz., normal day light (L_0) and normal day light + 6-h extended red light at night (L). Result revealed that yield of groundnut was significantly influenced by variety, boron and light where L₀, B₂, V₂ and L₀B₂V₂ gave the highest seed yield (1.37, 1.53, 1.39 and 1.82 t ha⁻¹, respectively). The highest seed yield of the interaction treatment was attributed to the highest number of pods plant⁻¹ (120.67), pod weight plant⁻¹ (59 g) and 100 seed weight (59.58 g). Number of branches plant⁻¹ had a positive relationship with pod yield $(R^2=0.255)$. Although imposition of light did not increase seed yield, it increased seed protein content (39.98 %), oil content (50.94 %) and vitamin E content (10.61 mg/100 g seed) in V_2 under highest boron dose.

CHAPTER 1

INTRODUCTION

Groundnut (*Arachis hypogaea* L.) is one of the most important oil seed crops throughout the world (Onemli, 2012). It contains so many bio-constituents for human betterment; among these, protein, oil (Linoleic Acid, and Oleic Acid, also a good source of Omega-6 fatty acids and minimal amount of Omega-3 fatty acids) and vitamin E (∞ -tocopherol) are the most important.

Boron is an important micronutrients required by plants in a very small quantity (El-Wahab, 2008) which are rapidly becoming deficient in soils (Tahir *et al.*, 2009). Boron is an essential element needed for normal growth and development of peanut plant (Gascho and Davis, 1995; Harris and Brolman, 1966a, 1966b, 1966c). Application of boron in soil significantly increase the growth and yield of groundnut (Kabir *et al.*, 2013 and Singaravel *et al.*, 2006). It has a special importance in retaining flower and fruit setting of legume crops (Zhang, 2001); it regulates carbohydrate metabolism and keeps role in seed formation (BARC, 2005). This element also influences on flowering in peanut (Singh *et al.*, 2009) because boron is the important micro-nutrient that makes the stigma receptive, sticky and making pollen grain fertile and enhance the pollination (Kaisher *et al.*, 2010). As a result, boron helps to increase number of pegs, pods in groundnut (Naiknaware *et al.*, 2015). Application of boron along with NPK also increase the total number of pods in peanut (Luo *et al.*, 1990) and finally increased the pod yield (Jena *et al.*, 2009).

Oil and protein content in groundnut increase with the application of B (Jena *et al.*, 2009) and combine application of boron and sulphur helps to increase the protein and oil content of groundnut seed (Naiknaware *et al.*, 2015). Boron also helps to uptake the highest value of N, P, K, Fe and Mn (Nasef *et al.*, 2006) and K helps to increase Vitamin E (α -tocopherol) content in Tomato (Caretto *et al.*, 2008). Boron (B) deficiency problem for crop production have been identified in Bangladesh (Ahmed & Hossain, 1997) and application of boron in crops is limited at farmer's field (Nasreen *et al.*, 2015). Even farmers are not aware of the importance of boron on groundnut.

Light plays an important role for the vegetative and reproductive growth in groundnut. The quantity, quality and direction of light are perceived by several different photosensory systems that together regulate nearly all stages of plant development, presumably in order to maintain photosynthetic efficiency (Hangarter, 1997). However, the number of flowers markedly reduce if less light is received by the peanut plants (Cox, 1978). Total numbers of pegs, pods and thereby yield become lower in long day photoperiods but vegetative production is higher in long day photoperiod (Bagnall and King, 1991, Stalker and Wynne, 1983). In groundnut, for light supplementation peg to pod conversation rate and yield is lower (Nigam et al., 1998) but light stress can lead to ROS (Reactive Oxygen Species) accumulation and antioxidant enzymes activation in plant (Mittler, 2002). With the supplementation of light helps to reduce the seed protein content and higher oil content than that of normal day length in leguminous crops (Han et al., 1996). In Bangladesh, groundnut is grown in both winter and summer. As in winter, there is no shortage of light supply to crops. But during summer, light supply is interrupted by clouds leading to lower yields. This situation should be taken under consideration as groundnut seed crop is grown in summer. There is evidence that abundant supply of light helps to increase yield. Increasing seed yield is also important as the price of seed is very high especially when compared to non-seed kernel. Further, influence of Boron and light on the quality of seed to be examined. However, little or no experiment was conducted in Bangladesh to find out the impact of light on groundnut. Therefore, it is important to study the effect of boron and light supplementation for better growth, reproductive development, yield and quality of groundnut.

Keeping all points in minds mentioned above, the present study was undertaken with the following objectives-

- To observe the influence on yield and quality of groundnut seeds by the application of boron.
- To find out the impact on yield and quality of groundnut seeds by increasing light duration.
- To evaluate the interaction effect of light and boron on yield and quality of groundnut seeds.

CHAPTER 2

REVIEW OF LITERATURE

This chapter represents a comprehensive review of the works which have been done in Bangladesh and many other countries of the world with regards to the yield and quality of groundnut seed as influenced by light and boron.

2.1 Effect of boron and light

2.1.1 Growth parameters

2.1.1.1 Days to emergence

Roekkasem (1994) conducted an experiment to investigate the boron deficiency in food legumes in Northern Thailand. They reported that low boron was responsible for poor seed germination and/or seedling establishment in peanut.

Rerkasem and Loneragan (1990) conducted a field study to investigate the effect of seed B (boron) on early seedling growth in cool season plantings of black and green gram at Chiang Mai, Thailand. They reported that B helped on early seedling growth.

2.1.1.2 Days to flowering

Ansari *et al.* (2014) conducted an experiment to find out the efficacy of boron sources on groundnut production under North East Hill Regions and stated that application of boron reduced days to 50% flowering by 4-5 days in groundnut.

Singh and Misra (2009) stated that application of boron in peanut caused 2-3 days early flowering.

2.1.1.3 Plant height

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B helped to increase the plant height of groundnut.

Jing *et al.* (1994) reported that the application of B promotes the absorption of N by groundnut and increases the plant height, plant dry weight and the total number of pods.

Wynne and Emery (1974) conduced an experiment to identify the response of intersubspecific peanut hybrids to photoperiod. They reported that long day photoperiod produced tallest plant than short day photoperiod.

2.1.1.4 Leaf area

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B help to increase the leaf area index (LAI) of groundnut.

Nigam *et al.* (1998) conducted an experiment to find out the effects of temperature and photoperiod on vegetative and reproductive growth of groundnut (*Arachis hypogaea* L.) and stated that with the supplementation of light leaf area of groundnut increased.

2.1.2 Yield and yield contributing characters

2.1.2.1 Number of branches

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B help to increase the number of branches plant⁻¹ of groundnut.

Luo *et al.* (1990) carried out field trials in 1987-88 on boron-deficient soils. Sodium borate was applied to the soils along with NPK fertilizers and found increased number of breaches plant⁻¹ in groundnut.

Wynne (1973) carried out an experiment to identify the photoperiodic response of peanut. They reported that vegetative growth of the plants was reduced by short day treatments.

2.1.2.2 Shoot dry weight

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B helped to increase the shoot dry weight of groundnut.

Nigam *et al.* (1998) conducted an experiment to find out the effects of temperature and photoperiod on vegetative and reproductive growth of groundnut (*Arachis hypogaea* L.) and stated that total dry matter of groundnut increased in long day photoperiod.

2.1.2.3 Number of flowers

Kabir (2007) conducted a pot culture experiment at the Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh to study the effect of different level of boron (B) on yield of three different groundnut varieties. He observed that the number of flower plant⁻¹ increased with the application of Boron.

Cox (1978) carried out an experiment to study the effect of quantity of light on the early growth and development of the peanut. He reported that, the number of flowers was markedly reduced as less light was received by the peanut plants.

2.1.2.4 Number of pegs

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). They found that the number of pegs plant⁻¹ increased with the application of B.

Kabir (2007) conducted a pot culture experiment at the Bangladesh Institute of Nuclear Agriculture (BINA), Mymensingh to study the effect of different level of boron (B) on yield of three different groundnut varieties and observed that the number of pegs plant⁻¹ increased with the application of Boron.

Stalker and Wynne (1983) stated that total numbers of pegs produced in short-day treatments were generally greater than in long-day treatments.

2.1.2.5 Number of pods

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). They found that the number of pods plant⁻¹ increased with the application of B.

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B helped to increase the number of pods plant⁻¹ of groundnut.

Bagnall and King (1991) conducted an experiment to study the response of peanut (*Arachis hypogaea*) to temperature, photoperiod and irradiance 1. They reported that number pods enhanced significantly in short day photoperiod.

Golakiya & Patel (1986) found that the application of Boron produced maximum number of mature pods in groundnut.

2.1.2.6 Pods dry weight

Ansari *et al.* (2013) found that significantly higher dry pod yield and haulm yield were recorded with solubor (Soil Application) (3.5 and 4.72 t/ha), which was 29 and 24% higher than control (2.71 and 3.82 t/ha).

Rashid *et al.* (1997) reported that the rainfed soils of peanut (*Arachis hypogaea* L.) growing fields in the Potohar planteau of Pakistan are alkaline and calcareous with low organic matter contents and the peanut crop grown on such soils was suspected to suffer from boron (B) deficiency. In a field experiment on an alkaline calcareous Typic Hapludalfs, B fertilization at 0.5 to 1.0 kg B/ha increased pod yield of rainfed peanut by 10%.

Bagnall and King (1991) conducted an experiment to study the response of peanut (*Arachis hypogaea*) to temperature, photoperiod and irradiance 1. They reported that pod weight enhanced significantly in short day photoperiod.

2.1.2.7 The 100 seed weight

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B help to increase the 100 pods weight plant⁻¹ of groundnut.

Nigam *et al.* (1998) conducted an experiment to find out the effects of temperature and photoperiod on vegetative and reproductive growth of groundnut (*Arachis hypogaea* L.) and stated that pod weight of groundnut increased in short day photoperiod.

Luo *et al.* (1990) carried out field trials in 1987-88 on boron-deficient soils. Sodium borate was applied to the soils along with NPK fertilizers and found increased the 100 seeds weight in groundnut.

2.1.2.8 Shelling percentage

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.) and found that the shelling% increased with the application of B.

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut cv. BARI Cheenabadam 7. They found that the combine application of P, Ca and B helped to increase the shelling percentage of groundnut.

Sharma *et al.* (2012) stated that during stress condition plant made a defense mechanism on itself.

Golakiya & Patel (1986) conducted a pot experiment, with the application of boron, peanut produced maximum number of mature pods, shelling percentage, minimum number of pops and highest pod yield.

2.1.2.9 Pod yield

Jena *et al.* (2009) conducted an experiment to observe the effects of boron and boron enriched organic manure on yield and quality of groundnut in boron deficient Alfisol. Boron at 1 kg/ha and B enriched cow dung increased groundnut pod yield by 57 and 62%.

Chitdeshwari & Poongothai (2003) conducted front line demonstration in the farmers field on the response of groundnut to the application of multi micronutrients to soil and also used as a seed treatment. They indicated that the soil application of Zn, B and S significantly increased the pod yield.

Rashid *et al.* (1997) carried out an experiment in the rainfed soils with low organic matter contents and the crop is grown without adequate fertilization. The peanut crop grown on such soils was suspected to suffer from boron (B) deficiency. B fertilization at 0.5 to 1.0 kg B/ha increased pod yield of rainfed peanut by 10% over control.

Ketring, 1979) conducted a light experiment to find out the light effects on development of an indeterminate plant. He stated that long photoperiod produced the largest amount of vegetative, but least number of reproductive components.

2.1.2.10 Seed yield

Kabir *et al.* (2013) conducted an experiment to observe the effect of Phosphorus (P), Calcium (Ca) and Boron (B) on the growth and yield of groundnut. They found that the combine application of P, Ca and B helped to increase the seed weight of groundnut. Jena *et al.* (2009) conducted an experiment to observe the effects of boron and boron enriched organic manure on yield and quality of groundnut in boron deficient Alfisol. They observed that application of boron and B enriched cow dung increased groundnut yield.

2.1.2.11 Stover yield

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). They found that the haulm yield increased with the application of B.

Ansari *et al.* (2013) found that significantly higher dry pod yield and haulm yield of groundnut were recorded with solubor (Soil Application) (3.5 and 4.72 t/ha), which was 29 and 24% higher than control (2.71 and 3.82 t/ha).

Wynne (1973) carried out an experiment to identify the photoperiodic response of peanut. He reported that vegetative growth of the plants was reduced by short day treatments.

2.1.3 Quality contributing characters

2.1.3.1 Protein content

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). They found that the protein content in groundnut increased with the application of B.

Jena *et al.* (2009) conducted an experiment to observe the effects of boron and boron enriched organic manure on yield and quality of groundnut in boron deficient Alfisol. They found protein content in groundnut increased by 1-4 and 3-13%, respectively over control due to B application.

Han *et al.* (1996) reported that when plant is exposed to the long photoperiod produced lower seed protein than that in short photoperiod.

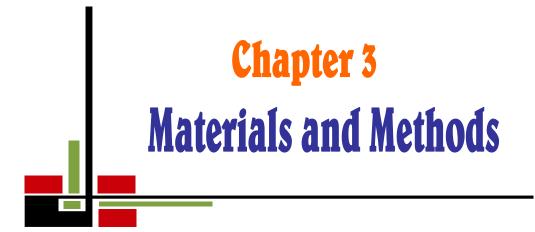
2.1.3.2 Oil content

Naiknaware *et al.* (2015) carried out the field trial to study the varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). They found that the oil content in groundnut increased with the application of B. Jena *et al.* (2009) conducted an experiment to observe the effects of boron and boron enriched organic manure on yield and quality of groundnut in boron deficient Alfisol. They found oil content and oil content in groundnut increased by 1-4 and 3-13%, respectively over control due to B application.

Han *et al.* (1996) reported that when plant is exposed to the long photoperiod had seed higher oil content than that in short photoperiod.

2.1.3.3 Vitamin E content

Nasef *et al.* (2006) found that boron helps to uptake the highest value of N, P, K, Fe and Mn and Caretto *et al.*, (2008) reported that K helped to increase Vitamin E (α -tocopherol) content in Tomato.


Mittler (2002) reported that light stress can lead to ROS (Reactive Oxygen Species) accumulation and antioxidant enzymes activation.

Demmig-Adams and Adams (1992). Stated that plants exposed to excessive light can suffer photo-inhibition, serious damage to the photosynthetic apparatus, and degradation of photosynthetic proteins.

2.1.3.4 Germination percentage

Gupta and Solanki (2012) reported that B concentration of 15 ppm and 5ppm were more suitable for seeds as 15 ppm gave highest seed germination, while seeds of 5 ppm treatment were the highest length, fresh weight and dry weight of seedlings over control in Brinjal.

Roekkasem (1994) stated that boron deficiency on peanut induce the reduction of seed yield and lowering of seed quality. Sowing low boron seeds may result in poor germination and/or poor seedling establishment in the peanut. Low boron in the seed is associated with physical damages which may lead to other problems of poorer quality.

CHAPTER 3

MATERIALS AND METHODS

In this Chapter different materials and methodologies followed during the experimental period are described as follows:

3.1 Description of the experimental site

3.1.1 Location

The experiment was conducted at the Agronomy Field, Sher-e-Bangla Agricultural University (SAU), Dhaka-1207, during the period of March 17 to July 10, 2014 to study the yield and quality of groundnut seed as influenced by light and boron. The experimental filed is located at 23^{0} 41' N latitude and 90^{0} 22' E longitude at a height of 8.6 m above the sea level belonging to the Agro-ecological Zone "AEZ-28" of Madhupur Tract (BBS, 2013).

3.1.2 Soil

The soil of the research field is slightly acidic in reaction with low organic matter content. The selected research plot was above flood level and sufficient sunshine was available and was also available irrigation and drainage system during the experimental period. Soil sample from 0-15 cm depth were collected from experimental field and the soil analysis were done from Soil Resources Development Institute (SRDI), Dhaka. The experimental plot was high land having pH 5.9. The physical properties and nutritional status of soil of the experimental plot are given in Appendix I.

3.1.3 Climate

The experimental field was suited under the sub-tropical climate, usually the rainfall is heavy during *Kharif* season, (April to September) and scanty in *Rabi* season (October to March). In *Robi* season temperature is generally low and there is plenty of sunshine. The temperature tends to increase from February as the season proceed towards *Kharif* and temperature was so high during April to July in spite of having sometimes rainfall. Rainfall was scanty during March to April 2014, but increase from May to July. The monthly total rainfall, average temperature during the study period (March to July) has been presented in Appendix II.

3.2 Crops

Two groundnut verities were used for this experiment viz., Maischor Badam (Dhaka-1) and BARI Chinabadam-8. Seeds were provided by Bangladesh Agricultural Research Institute (BARI), Gazipur. Average plant height of these verities ranged from 30-42 cm. Average yield in *Kharip* season 1.6-1.8 ton/ha (Dhaka-1) and 2.5 ton/ha (BARI Chinabadam-8). Both verities require about 120-142 days for completing its life cycle in *Kharif* season.

3.3 Experimental treatment

The experiment consisted of 3 factors:

Factors A: Levels of Light

- (a) $L_0 = normal day light (\approx 12 h light)$
- (b) L = normal day light + 6-h extended red light at night (\approx 18-h light)

Factors B: Levels of Boron [Source: boric acid (16.5% boron)]

There were three level of Boron. There were-

(a) B₀ = 0 (Control)
(b) B₁ = 1 kg ha⁻¹
(c) B₂ = 2 kg ha⁻¹

Factors C: Groundnut Verities

There were two varieties under study and they were-

- (a) $V_1 = Dhaka-1$ (Maizchar Badam)
- (b) V₂= BARI Chinabadam-8

Treatment: Boron-variety interaction under light and dark at night (6x2=12)

LB₀V₁, L₀B₀V₁, LB₁V₁, L₀B₁V₁, LB₂V₁, L₀B₂V₁, LB₀V₂, L₀B₀V₂, LB₁V₂, L₀B₁V₂, LB₂V₂, L₀B₂V₂ To extent the photoperiod, one month after seed sowing (after seedling emergence) artificial lightening was used by florescence bulb from 1800-h 2400 @30-50,000 lux, measured by lux meter.

3.4 Details of the field operation

3.4.1 Land preparation

Repeated ploughing by power tiller was done on 10 March and Final Land was prepared on 16 March. Ploughing was followed by laddering in order to break clods as well as level the land. All weeds, stubbles and crop residues were removed from the experimental field. The layout of the experiment was done as per as statistical design.

3.4.2 Experimental design

The experiment was laid out in a split-split plot design with three replications. Light was imposed in the main plots while Boron in the sub-plot and variety in the sub-sub plot. Each experimental unit was divided into three blocks each of which representing a replication. There were altogether 36 units of plots, each plot was measuring $4m^2$ (2m x 2m). Inter-plot and inter-block spacing was 0.5 m and 0.5 m, respectively. Spacing was maintained 30 cm x 15 cm with 6 lines in a plot having 1,24,800 plants ha⁻¹.

3.4.3 Light structure:

Electricity wires, 18 bulbs 200W (Normal Bulb), holder, 18 blub covers (Dhakna), black polythene, rope, net, bamboo stick etc.

3.4.4 Fertilizer application

The following doses of manure and fertilizer were used

Urea	:	25 kg ha ⁻¹
TSP	:	160 kg ha ⁻¹
MP	:	75 kg ha ⁻¹
Gypsum	:	170 kg ha ⁻¹
Zinc sulphate	:	4 kg ha ⁻¹
Boric Acid	:	0 kg ha ⁻¹ , 5 kg ha ⁻¹ , 10 kg ha ⁻¹

Half dose of urea and all others fertilizer were applied during final land preparation and incorporated in each plot. Rest amount of urea was applied during flowering of plants.

3.4.5 Collection of seeds

As per treatment seeds of different groundnut varieties were collected from Bangladesh Agricultural Research Institute (BARI), Joydebpur, Gazipur.

3.4.6 Test for seed germination

Germination test was performed in the laboratory before sowing the seeds in the main plot. For laboratory test petridishs and pots were used. Three layers of filter paper were placed on petridishes and the filter papers were soaked with water. Sand and normal soil was used in different pots to check whether soil or sand is good for seed germination. Separately 10 seeds were distributed in each petridishe and pot. Days to emergence were calculated in percentage basis by using the following formula: %Germination = $\frac{Number of seeds germinated}{Number seeds set for germination} X 100$

3.4.7 Sowing of seeds

The Seeds were sown on 17 March 2014. As a good tilth condition, furrows were made with hand rakes for sowing. Before sowing seeds were treated with Provax-200 Ec @ 2.5 g powder kg⁻¹ seed. After providing slight water in each line, 26 seeds were sown in a line maintaining plant to plant distance 15 cm (2 seeds in a hole) in 2-3 cm depth @110 kg seeds ha⁻¹(with shell).

3.4.8 Intercultural operations

The following intercultural operations were done for the better growth and development of the plants during the period of the experiment:

3.4.8.1 Irrigation

Threes level of irrigation were applied, the first irrigation was done after 20 days of planting, the second during flowering stage, and the third irrigation was done at pegging and pod formation stage.

3.4.8.2 Weeding and earthing up

Weeding was accomplished as and when necessary to keep the crop field free from weeds and to break the soil crust. Two level of earthing up were done, the first just before flowering and the second one during pegging stage.

3.4.8.3 Disease and insect control

To prevent the plant from fungal infection, Rovral @ 2 g L^{-1} was applied at 15 days of interval. To control sowing seeds from Ant Sevin 85 Ec was applied. To prevent plants from insect's appropriate insecticides was sprayed in the experimental field.

3.4.9 Harvesting

Harvesting was done at 8 and 9 July 2014. The plants were carefully uprooted from each plots with the help of khurpi. The plants were taken to the threshing floor and washed with running tap water. After washing leaf, stem, roots, pegs and pods were separated and data were recorded.

3.5 Parameter studies

3.5.1 Growth parameter

- 1. Days to emergence
- 2. Days to flowering
- 3. Plant height (cm)
- 4. Leaf area (cm^2)

3.5.2 Yield and yield contributing characters

- 1. Number of branches plant⁻¹
- 2. Shoot dry weight (g)
- 3. Number of flowers plant⁻¹
- 4. Number of pegs plant⁻¹
- 5. Number of pods plant⁻¹
- 6. Pod dry weight $plant^{-1}(g)$
- 7. 100 seed weight (g)
- 8. Shelling percentage
- 9. Pod yield (t/ha)
- 10. Seed yield (t/ha)
- 11. Stover yield (t/ha)

3.5.3 Seed quality contributing characters

- 1. Protein content (%)
- 2. Oil content (%)
- 3. Vitamin E content (mg/100 g seed)
- 4. Germination Percentage

3.6 Procedures of data collection

3.6.1 Growth Parameter

3.6.1.1 Days to emergence

Days to emergence of seedling was calculated by checking every day for first and last emergence. Then days to first and last emergence days was recorded.

3.6.1.2 Days to flowering

Days to flowering in plant was recorded by checking every day for first and 50% flowering. Then days to first and last flowering was recorded.

3.6.1.3 Plant height

Plant height was measured from the ground level to top of the plant at 30, 60, 90, and during harvesting. From each plot, 3 plants were measured and averaged in centimeter.

3.6.1.4 Leaf area

The leaf area was calculated by leaf area meter. It was starting from 30 days after planting (DAP) to harvest.

3.6.2 Yield and yield components

3.6.2.1 Number of branches

Three plants were selected from each plot randomly. The number of total branches from 3 plants were counted and averaged then to have a total numbers of branches palnt⁻¹.

3.6.2.2 Shoot dry weight

Three plants were uprooted from each field and washed with a running tap water then cut root and shoot, shoot was kept for oven drying maintaining temperature 80° C for 72 hours until a constant weight was obtained. Then data were recorded as shoot dry weight plant⁻¹.

3.6.2.3 Number of flowers

The number of flowers from selected three uprooted plants were counted and averaged into flowers plant⁻¹ at 60 DAP, 90 DAP and at harvest.

3.6.2.4 Number of pegs

The number of pegs from selected three uprooted plants were counted and averaged into pegs plant⁻¹ at 60 DAP, 90 DAP and at harvest.

3.6.2.5 Number of pods

The number of pods from selected three uprooted plants were counted and averaged into pods plant⁻¹ at 60 DAP, 90 DAP and at harvest.

3.6.2.6 Pod dry weight

The number of pods from selected three uprooted plants were oven dried and dried pods were weight recorded in gram. Then averaged into pod weight for 60 DAP, 90 DAP and at harvest.

3.6.2.7 100-seed weight

Weight of 100 sun dried seeds (g) were taken using an electric balance.

3.6.2.8 Shelling percentage

Shelling percentage was calculated as (seed dry weight of 100 pods/ 100 pod weight \times 100)

3.6.2.9 Pod yield

Finally, total pod yield of the experimental plot was calculated as ton ha⁻¹.

3.6.2.10 Seed yield

Seed yield of the experimental plot was calculated as ton ha⁻¹.

3.6.2.11. Stover yield

Stover yield of the experimental field was calculated as ton ha⁻¹.

3.6.3 Quality parameters

Seed protein content, oil content and vitamin E content were analyzed at Bangladesh Council of Scientific and Industrial Research (BCSRI)

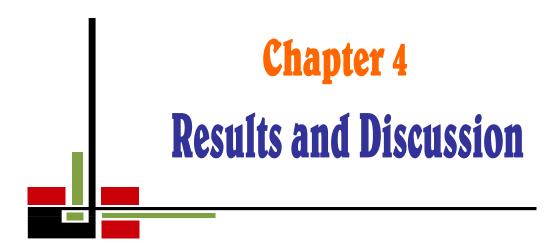
3.6.3.1 Protein content

The protein content was evaluated by the multiplication of total nitrogen with 6.25 (Kaishar *et al.*, 2010), which was determined by following the Micro-Kjeldahl's method (Devani *et al.*, 1989).

3.6.3.2 Oil content

In order to determine the oil content of groundnut seed, the soxhlet extraction method (AOAC, 1990) which was used by Inuwa *et al.*, (2011).

3.6.3.3 Vitamin E content


Ejoh and Ketiku (2013) used a procedure to analysis the vitamin E content of groundnut seed and in the present study we also followed the same procedure to determine the vitamin E content of groundnut seed.

3.6.3.4 Germination percentage

After harvesting pods were stored in a natural condition and seeds were taken for germination test. Then 25 seeds dish for each treatment were taken in each petri to evaluate the percentage of seed germination. The number of germinated seeds was counted and finally germination percentage was recorded.

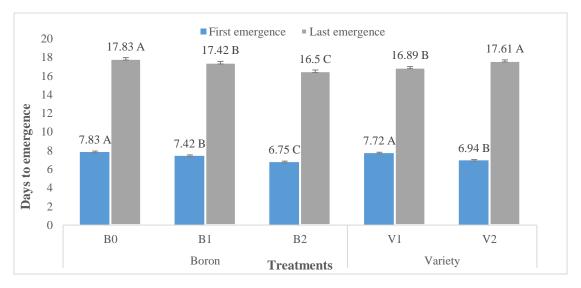
3.7 Statistical analysis

The data were analyzed through a statistical computer software IBM-SPSS (Version 20.0) and the means were adjusted by Tukey's Test at 0.05% level of significance.

CHAPTER 4

RESULTS AND DISCUSSION

This chapter represent the result and discussions of the present study. Summary of mean square values at different parameters are also given in the appendices from IV to XII.


4.1 Effect of boron and light on growth of groundnut

4.1.1 Days to emergence

4.1.1.1 Effect of boron and variety

Boron had a significant impact on days to groundnut seedling emergence. When B was applied at 2 kg ha⁻¹ seed took shorter times for days to 1st (6.75 days) and last emergence (16.50 days) in both the varieties compared to control (7.83 and 17.83 days) (Figure 1 and appendix III). BARI Chinabadam-8 took shorter time to first emergence and in case of last emergence it took more time than Dhaka-1. This might be due to that B helped early germination and faster growth of hypocotyl (Rerkasem *et al.* 1990). Roekkasem (1994) reported that low boron is responsible for poor seed germination and/or seedling establishment in peanut.

We applied light just after 30 days of seed sowing, so in our present study we couldn't study the effect of light on days to seedling emergence.

B= Boron; V= Variety; B₀= 0 Kg B ha⁻¹, B₁= 1 Kg B ha⁻¹, B₂= 2 Kg B ha⁻¹; V₁= Dhaka-1, V₂= BARI Chinabadam-8 Means were separated by Tukey's test at $P \le 0.05$. Vertical bars represent the standard error of the means

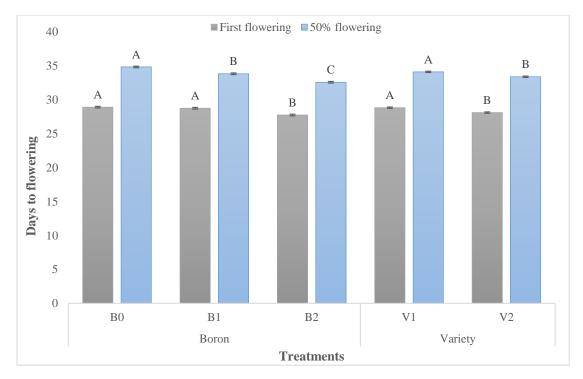
Figure 1. Effect of boron and variety on days to emergence of two groundnut varieties

4.1.1.2 Effect of boron-variety interaction

From data (Table 1 and appendix III) it was found that V_1B_2 gave the best result compared to other interactions. This interaction took 6.33 days for first emergence and for last emergence V_1B_2 and V_1B_0 gave the similar result (16.50 days and 16.17 days, respectively).

Treatment	Days to emergence		
	first	last	
Boron (B)×Variety(V)			
B_0V_1	8.83 a ^z	16.17 c	
B_1V_1	8.00 b	18.00 a	
B_2V_1	6.33 d	16.50 c	
B_0V_2	6.83 cd	16.83 bc	
B_1V_2	6.83 cd	17.67 ab	
B_2V_2	7.17 c	18.33 a	
SE (±)	0.152	0.192	
CV	5.08 %	2.90 %	
Significance (P)			
B×V	**	**	

Table 1. Effect boron-variety interaction on days to emergence of groundnut


B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 , **means significant at p ≤ 0.01 , B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.1.2 Day to flowering

4.1.2.1 Effect of boron and variety

Boron applied at 2 kg ha⁻¹ facilitated 2 days to 1st flowering (27.75 days) and 3 days early 50% of flowering (32.58 days) than the control (28.91 and 34.83 days, respectively) (Figure 2 and appendix III). Because, application of B had pronounced influence on flowering (Singh *et al.*, 2009). Singh *et al.* (2009) reported that B application caused 2-3 days early flowering even application of boron reduced days to 50% flowering by 4-5 days over control in groundnut (Ansari *et al.*, 2016).

Though light treatment showed 1 days early in days to 50% flowering, in spite of light treatment we couldn't report any findings, because light treatment was imposed after 30 days of seed sowing.

B= Boron; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹. V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at $P \le 0.05$. Vertical bars represent the standard error of the means.

Figure 2. Effect of boron and variety on days to flowering of two groundnut varieties

4.1.2.2 Effect of boron-variety interaction

Boron-variety interaction had no significant impact on days to first flowering but for days to 50% flowering it had a significant impact. Result showed that B_2V_2 interaction showed the earlier flowering over other interactions (Table 2 and appendix III).

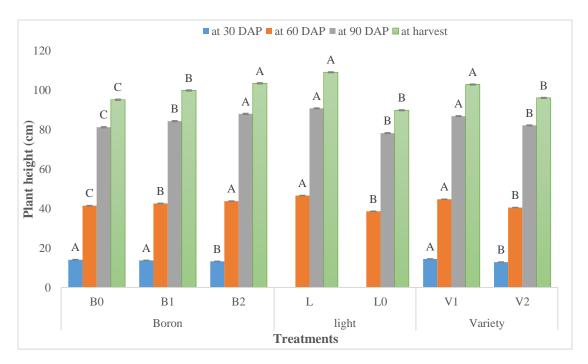
Treatment	Days to flowering					
	first	50%				
Boron (B) \times Variety (V)	Boron (B) \times Variety (V)					
B_0V_1	29.17	34.83 a ^z				
B_1V_1	29.17	34.33 a				
B_2V_1	28.17	33.17 b				
B_0V_2	28.67	34.83 a				
B_1V_2	28.33	33.33 b				
B_2V_2	27.33	32.00 c				
SE (±)	-	0.180				
CV	1.43 %	0.99 %				
Significance (P)						
B×V	NS	**				

Table 2. Effect of boron-variety interaction on days to flowering of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, ** means significant at p \leq 0.01, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.1.3 Plant height (cm)

4.1.3.1 Effect of light


Plant height of both varieties increased gradually with the advancement of growth stage and up to harvest. The highest plant height was obtained from the light treatment (L) (13.74, 46.63, 90.79 and 109.08 cm at 30, 60, 90 DAP and during harvest, respectively) over the control (L₀) (13.63, 38.64, 78.24 and 89.84 cm at 30, 60, 90 DAP and during harvest time respectively) (Figure 3 and appendix IV). The fact that plant growth rate was significantly influenced by light in groundnut (Nigam *et al.*, 1994). Wynne and Emery (1974) stated that long day photoperiod produced taller plants than the short day photoperiod.

4.1.3.2 Effect of boron

Plant height showed significant variations with the application of different doses of boron. Data revealed that 2 kg ha⁻¹ B produced the highest plant height over the control at 30, 60, 90 DAP and during harvest time (Figure 3 and appendix IV). This might be due to that boron helped to cell elongation and meristematic tissue development in plant (Mengel and Kirkby, 1982). It was also reported that plant height increased with the application of boron in groundnut (Kabir *et al.*, 2013).

4.1.3.3 Effect of variety

Dhaka-1 produced the highest plant height (14.48, 44.74, 86.86 and 102.90 cm) while BARI Chinabadam-8 showed the lowest and identical plant height (12.88, 40.53, 82.17 and 96.12 cm) at 30, 60, 90 DAP and during harvest time respectively (Figure 3 and appendix IV). This might be due to genetic variation among the varieties. The present finding is not consisted with the findings of Singh *et al.* (2007).

DAP= Days after planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 3. Effect of boron and light on the plant height of two groundnut varieties

4.1.3.4 Effect of boron-variety interaction

Plant height showed significant variations with the application of different doses of boron. Data revealed that 2 kg boron ha⁻¹ produced the highest plant height over the control at 90 DAP and during harvest time but at 30 DAP and 60 DAP there was no significant variations among the treatment interactions (Table 3 and appendix IV). Tallest plant was observed from V_1B_2 (Dhaka-1 and B at 2 kg ha⁻¹) treatment interaction at all sampling dates except at 30 DAP. Jiang *et al.* (1994) reported that the application of boron promoted the absorption of N by groundnuts and increased the plant height.

Treatment	Plant height (cm) at			
	30 DAP	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)				·
B_0V_1	15.02	43.73	82.52 d ^z	98.00 cd
B_1V_1	14.58	44.54	87.26 b	103.22 b
B_2V_1	13.84	45.96	90.81 a	107.47 a
B_0V_2	13.19	39.23	79.92 e	92.35 e
B_1V_2	12.84	40.74	81.35 de	96.52 d
B_2V_2	12.63	41.61	85.23 c	99.50 c
SE (±)	-	-	0.416	0.438
CV	4.94 %	1.26 %	1.15 %	1.05 %
Significance (P)				
B×V	NS	NS	**	*

Table 3. Effect of boron-variety interaction on the plant height of groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, ** means significant at p \leq 0.01, *means significant at p \leq 0.05, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.1.3.5 Interaction effect of light, boron and variety

Interaction between light, boron and variety was observed a positive effect on plant height at 90 DAP. But data showed that there were no significant differences among the treatment interactions on plant height of groundnut at other sampling dates (Table 4 and appendix IV). Tallest plant was observed from LB_2V_1 treatment interaction at the growth stage of 90 DAP and at harvest.

Treatment]	Plant height (cm) at					
	60 DAP	90 DAP	Harvest				
$Light(L) \times Boron(B) \times Variety(V)$							
LB_0V_1	47.59	89.51 b ^z	108.40				
$L_0B_0V_1$	39.87	75.52 h	87.60				
LB_1V_1	48.57	95.90 a	114.80				
$L_0B_1V_1$	40.51	78.61 fg	91.64				
LB_2V_1	49.82	98.45 a	118.54				
$L_0B_2V_1$	42.11	83.17 de	96.39				
LB_0V_2	43.26	85.30 cd	100.92				
$L_0B_0V_2$	35.21	74.54 h	83.77				
LB_1V_2	44.98	86.30 c	104.47				
$L_0B_1V_2$	36.50	76.40 gh	88.57				
LB_2V_2	45.59	89.28 b	107.34				
$L_0B_2V_2$	37.62	81.17 ef	91.66				
SE (±)	-	0.588	-				
CV	1.26 %	1.15 %	1.05 %				
Significance (<i>P</i>)							
L×B×V	NS	*	NS				

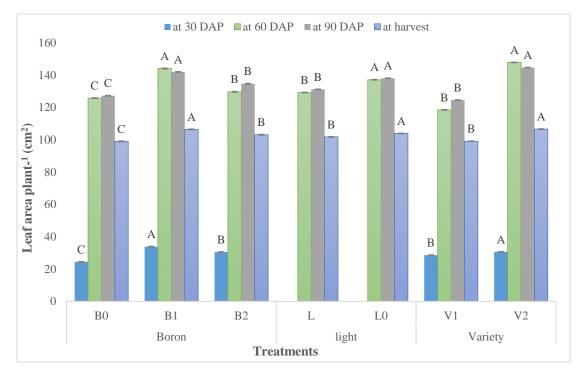
 Table 4. Interaction effect of light, boron and variety on the plant height of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, *means significant at $p \le 0.05$, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.1.4 Leaf area (cm²)

4.1.4.1 Effect of light

Leaf area of both varieties increased gradually with the advancement of growth stage up to certain days and then showed decreasing trend. The highest leaf area was obtained from the control treatment (L_0) over the light control (L) at 60, 90 DAP and during harvest (Figure 4 and appendix V). The result is not supported by that of Nigam *et al.* (1998). Imposition of light did not increase the leaf area, probably photosynthates increased leaf thickness instead of leaf area. In this study leaf thickness was not monitored.


4.1.4.2 Effect of boron

Leaf area of groundnut varied significantly among the varieties due to the effect of different doses of boron (Figure 4 and appendix V). The data revealed that 1 kg B ha⁻¹ produced the highest leaf area and control plant produced the lowest leaf area. Probably

boron deficiency inhibited the leaf expansion in groundnut (Dell & Huang, 1997). Kabir *et al.* (2013) also reported that the leaf area was increased with the application of boron.

4.1.4.3 Effect of variety

Among the two varieties BARI Chinabadam-8 (V₂) produced the highest leaf area over the Dhaka-1 (V₁) at 30 DAP, 60 DAP, 90 DAP and during harvest (Figure 4 and appendix V). This might be due to genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes has increased the productivity of groundnut.

DAP= Days after planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 4. Effect of boron and light on leaf area of two groundnut varieties

4.1.4.4 Effect of boron-variety interaction

Leaf area of groundnut varieties varied significantly with the application of different doses of boron. Boron-variety interaction produced the significant effect at leaf area plant⁻¹ (Table 5 and appendix V). Data revealed that the V_2B_1 interaction gave the highest result at all sampling dates.

The findings of present study are in agreement with the findings of Kabir *et al.* (2013), they observed that leaf area was increased with the application of boron.

Treatment	Leaf area (cm ²) at			
	30 DAP	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)				
B_0V_1	25.99 d ^z	107.48 e	113.97 f	94.46 e
B_1V_1	30.64 b	134.19 c	132.71 d	103.51 c
B_2V_1	28.96 c	113.64 d	126.80 e	99.04 d
B_0V_2	22.84 e	143.90 b	140.35 c	103.42 c
B_1V_2	37.05 a	153.85 a	151.03 a	109.13 a
B_2V_2	31.98 b	145.56 b	142.38 b	107.00 b
SE (±)	0.349	0.419	0.345	0.417
CV	1.54 %	0.99 %	0.42 %	0.97 %
Significance (<i>P</i>)				
B×V	**	**	**	**

Table 5. Effect of boron-variety interaction on leaf area of groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, ** means significant at $p \le 0.01$, $B_0 = 0 \text{ kg B ha}^{-1}$, $B_1 = 1 \text{ kg B ha}^{-1}$, $B_2 = 2 \text{ kg B ha}^{-1}$, $V_1 = \text{Dhaka-1}$, $V_2 = \text{BARI Chinabadam-8}$

4.1.4.5 Interaction effect of light, boron and variety

Interaction between light, boron and variety had a great effect on leaf area. Data showed that the significant differences was observed in leaf area of groundnut at all sampling dates (Table 6 and appendix V). Highest leaf area was observed from $L_0B_1V_2$ treatment interaction compared to others interactions.

Treatment	Lea	af area plant ⁻¹ (cm	2) at
	60 DAP	90 DAP	Harvest
Light(L)×Boron(B)×Variety(V))		
LB_0V_1	104.94 g ^z	113.42 i	92.88 e
$L_0B_0V_1$	110.02 f	114.52 i	96.05 d
LB_1V_1	126.25 d	126.61 g	99.87 с
$L_0B_1V_1$	142.13 c	138.82 e	107.15 a
LB_2V_1	110.34 f	119.39 h	98.66 cd
$L_0B_2V_1$	116.93 e	134.21 f	99.42 c
LB_0V_2	140.44 c	138.80 e	103.20 b
$L_0B_0V_2$	147.35 b	141.90 cd	103.64 b
LB_1V_2	149.93 b	147.90 b	108.77 a
$L_0B_1V_2$	157.77 a	154.18 a	109.49 a
LB_2V_2	143.09 c	140.53 de	106.76 a
$L_0B_2V_2$	148.02 b	144.24 c	107.24 a
SE (±)	0.592	0.489	0.590
CV	0.99 %	0.42 %	0.97 %
Significance (<i>P</i>)			
L×B×V	**	**	**

Table 6. Interaction effect of light boron and variety on leaf area of groundnut

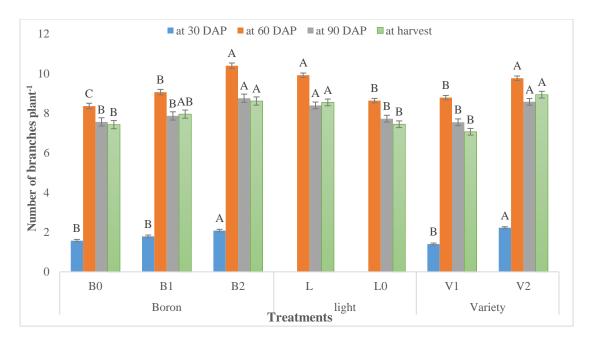
DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, ** means significant at $p \le 0.01$, $B_0=0$ kg B ha⁻¹, $B_1=1$ kg B ha⁻¹, $B_2=2$ kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), $L_0=$ normal day light (\approx 12-h light), $V_1=$ Dhaka-1, $V_2=$ BARI Chinabadam-8

4.2 Effect of boron and light on yield and yield attributes of groundnut

4.2.1 Number of branches plant⁻¹

4.2.1.1 Effect of light

Number of branches plant⁻¹ of groundnut showed statistically significant variations at 30 DAP, 60 DAP, 90 DAP and during harvest (Figure 5 and appendix VI). From the experiment it was observed that additional light helped to produce highest number of branches plant⁻¹ of groundnut. Probably light helped to increase the vegetative growth in groundnut (Nigam *et al.*, 1998). Wynne *et al.* (1973) also reported that vegetative growth increased in long day treatment.


4.2.1.2 Effect of boron

Number of branches plant⁻¹ showed significant variation due to different levels of boron application (Figure 5 and appendix VI). The data revealed that 2 kg B ha⁻¹ produced the highest number of branches plant⁻¹ and control plant produced the lowest number of

branches plant⁻¹ at all sampling dates in both of varieties. The possible reason behind the finding might be that B helps to promote the vegetative growth of groundnut (Singaravel *et al.*, 2006). Similar result was obtained from other studies (Kabir *et al.*, 2013 and Luo *et al.*, 1990).

4.2.1.3 Effect of variety

Mean number of branch showed a wide range of variations among the two varieties. BARI Chinabadam-8 produced highest number of branch plant⁻¹ at all the sampling dates whereas, Dhaka-1 produced lowest number of branch plant⁻¹ (Figure 5 and appendix VI). This might be due to the genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes showed increased productivity of groundnut.

DAP= Days after planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), L_0 = normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 5. Effect of boron and light on the number of branches plant⁻¹ of two groundnut varieties

4.2.1.4 Effect of boron-variety interaction

Number of branches palnt⁻¹ was not significantly influenced by the interaction of boron doses and verities at different days after planting (DAP) (Table 7 and appendix VI). Result showed that maximum number of branches plant⁻¹ was obtained from V_2B_2 at 30 DAP, 60 DAP, 90 DAP and during harvest.

Treatment	Number of branches plant ⁻¹ at			at
	30 DAP	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)	-			
B_0V_1	1.24	7.72	7.00	6.45
B_1V_1	1.30	8.56	7.28	7.06
B_2V_1	1.67	10.06	8.33	7.67
B_0V_2	1.90	9.00	8.11	8.39
B_1V_2	2.28	9.56	8.45	8.83
B_2V_2	2.49	10.72	9.17	9.56
SE (±)	-	-	-	-
CV	12.67 %	5.28 %	10.21 %	8.85 %
Significance (<i>P</i>)				
B×V	NS	NS	NS	NS

 Table 7. Effect of boron-variety interaction on the number of branches plant⁻¹ in groundnut

DAP= Days After Planting, B= Boron; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS=Non Significant, B₀= 0 Kg B ha⁻¹, B₁= 1 Kg B ha⁻¹, B₂= 2 Kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.1.5 Interaction effect of light, boron and variety

Interaction effect of light boron-variety of groundnut showed insignificant differences on number of branches palnt⁻¹ at all sampling dates (Table 8 and appendix VI). Mean number of branches plant⁻¹ varied from B doses to doses. Though, LB_2V_2 produced the height number of branches plant⁻¹ at all growth stages, there had no significant variation among the treatment interactions.

Treatment	Numbe	er of branches pl	ant ⁻¹ at
	60 DAP	90 DAP	Harvest
Light(L)×Boron(B)×Variety(V)			
LB_0V_1	8.11	7.33	7.00
$L_0B_0V_1$	7.33	6.67	5.89
LB_1V_1	9.11	7.67	7.67
$L_0B_1V_1$	8.00	6.89	6.44
LB_2V_1	9.78	8.33	8.33
$L_0B_2V_1$	10.33	8.33	7.00
LB_0V_2	10.33	8.33	9.22
$L_0B_0V_2$	7.67	7.89	7.56
LB_1V_2	11.00	8.78	9.33
$L_0B_1V_2$	8.11	8.11	8.33
LB_2V_2	11.11	9.89	9.67
$L_0B_2V_2$	10.33	8.45	9.44
SE (±)	-	-	-
CV	5.28 %	10.21 %	8.85 %
Significance (<i>P</i>)			
L×B×V	NS	NS	NS

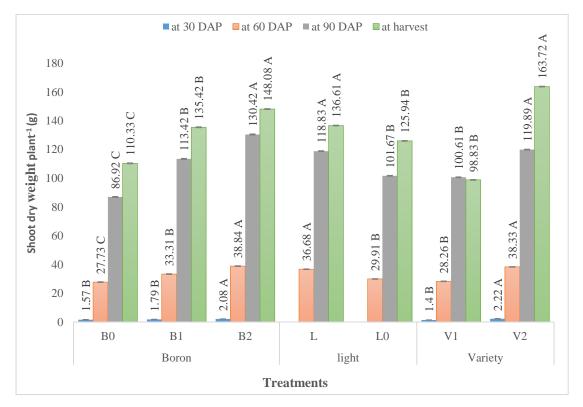
Table 8. Interaction effect of light-boron-variety on the number of branches plant1 of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS=Non Significant, B₀= 0 Kg B ha⁻¹, B₁= 1 Kg B ha⁻¹, B₂= 2 Kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.2 Shoot dry weight plant⁻¹ (g)

4.2.2.1 Effect of light

Significant variation for shoot dry weight plant⁻¹ of groundnut at 60, 90 DAP and at harvest were observed due to the effect of light (Figure 6 and appendix VII). Light treatment produced highest shoot dry weight during at all sampling dates over control. The reason behind the result might be due to that extended photoperiod helped to increase the vegetative growth (Ketring, 1979). The present finding is consisted with the finding of Nigam *et al.* (1998).


4.2.2.2 Effect of boron

The shoot dry weight of groundnut at 30, 60, 90 DAP and at harvest was influenced significantly due to different levels of boron application (Figure 6 and appendix VII). The highest shoot dry weight produced from 2 kg boron ha⁻¹ and the lowest shoot dry weight palnt⁻¹ was observed from control treatment. This might be due to that boron helped to increase the dry weight of groundnut plant (Kabir *et al.*, 2013). Harris &

Brolmann, (1966) also reported that shoot dry weight increased with the application of boron in groundnut.

4.2.2.3 Effect of variety

Shoot dry weight of both varieties of groundnut increased as the age of the plants was increased up to the harvest. From the present study, significant variation was observed in terms of shoot dry weight plant⁻¹ at all growth stages (Figure 6 and appendix VII). BARI chinabadam-8 produced the highest shoot dry weight whereas, Dhaka-1 produced the lowest shoot dry palnt⁻¹. The fact that genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes had increased the productivity of groundnut.

DAP= Days After Planting, B= Boron; L=Light; V= Variety; $B_0=0$ Kg B ha⁻¹, $B_1=1$ Kg B ha⁻¹, $B_2=2$ Kg B ha⁻¹, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V_1 =Dhaka-1, V_2 = BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 6. Effect of boron and light on shoot dry weight (g) plant⁻¹ of two groundnut varieties

4.2.2.4 Effect of boron-variety interaction

The shoot dry weight of groundnut influenced significantly by the interaction of boron variety interaction except 30 DAP (Table 9 and appendix VII). B_2V_2 interaction produced the highest shoot dry weight plant⁻¹ and B_0V_1 produced lowest shoot dry weight plant⁻¹.

Treatment	Shoot dry weight $plant^{-1}(g)$ at			at
	30 DAP	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)				
B_0V_1	1.24	23.29 e ^z	76.17 e	78.33 f
B_1V_1	1.30	29.44 d	110.67 c	105.50 e
B_2V_1	1.67	32.06 c	115.00 b	112.67 d
B_0V_2	1.90	32.18 c	97.67 d	142.33 c
B_1V_2	2.28	37.19 b	116.17 b	165.33 b
B_2V_2	2.49	45.61 a	145.83 a	183.50 a
SE (±)	-	0.338	0.466	0.404
CV	12.67 %	2.53 %	1.13 %	0.55 %
Significance (<i>P</i>)				
B×V	NS	**	**	**

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, ** means significant at $p \le 0.01$, NS=Non Significant, B₀= 0 Kg B ha⁻¹, B₁= 1 Kg B ha⁻¹, B₂= 2 Kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.2.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety showed the range of significant variation at all sampling dates except during 30 DAP (Table 10 and appendix VII). BARI Chinabdam-8 and light produced the highest shoot dry weight at all sampling dates with 2 kg B ha⁻¹ compared than that of others interactions.

Treatment	Shoot	Shoot dry weight plant ⁻¹ (g) at					
	60 DAP	90 DAP	Harvest				
Light(L)×Boron(B)×Variety(V)							
LB_0V_1	26.30 g	88.00 g	88.67 j				
$L_0B_0V_1$	20.27 h	64.33 i	68.00 k				
LB_1V_1	33.74 de	107.00 f	106.33 hi				
$L_0B_1V_1$	25.14 g	114.33 de	104.67 i				
LB_2V_1	34.90 cd	113.00 e	117.00 g				
$L_0B_2V_1$	29.22 f	117.00 cd	108.33 h				
LB_0V_2	31.47 ef	114.67 de	144.33 e				
$L_0B_0V_2$	32.89	80.67 h	140.33 f				
LB_1V_2	39.29 b	119.67 bc	168.33 c				
$L_0B_1V_2$	35.09 cd	112.67 e	162.33 d				
LB_2V_2	54.39 a	170.67 a	195.00 a				
$L_0B_2V_2$	36.83 bc	121.00 b	172.00 b				
SE (±)	0.477	0.659	0.571				
CV	2.53 %	1.13 %	0.55 %				
Significance (P)							
L×B×V	**	**	**				

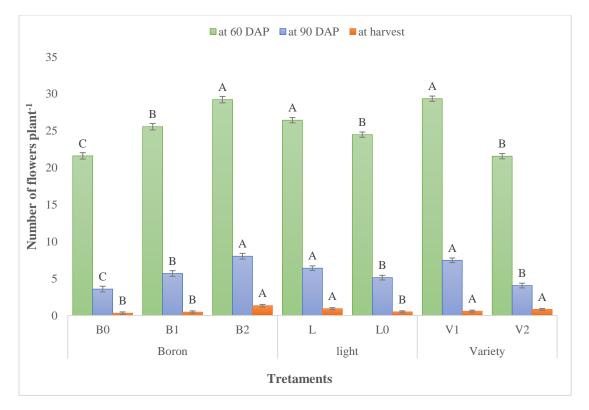
Table 10. Interaction effect of light-boron-variety on shoot dry weight of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, ** means significant at $p \le 0.01$, NS=Non Significant, $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), $V_1=$ Dhaka-1, $V_2=$ BARI Chinabadam-8

4.2.3 Number of flowers plant⁻¹

4.2.3.1 Effect of light

Number of flowers decreased gradually with the increase in plant age due to either pod formation or shedding. Light had the significant result on number of flowers plant⁻¹ at all sampling dates (Figure 7 and appendix VIII). Light produced highest flowers at 60 DAP, 90 DAP and during harvest. It might be due to light helped to increase flowering. Cox (1987) stated that the number of flowers was markedly reduced as less light was received by the plants, and the present finding consisted with their findings.


4.2.3.2 Effect of boron

Number of flowers plant⁻¹ varied significantly due to influence of different levels of boron application (Figure 7 and appendix VIII). It was noticed that the highest number of flowers plant⁻¹ obtained from 2 kg B ha⁻¹ and lowest was observed with 0 kg B ha⁻¹. During harvest 2 kg B ha⁻¹ and control had a statistically similar result. This might be

due to boron had a special importance in retaining flowering and fruit setting of legumes crops (Zhang, 2001). It was reported that total number of flowers increased by B fertilization (Gupta, 1993) and application of B had pronounced influence on flowering in peanut (Singh *et al.*, 2009).

4.2.3.3 Effect of variety

Number of flowers plant⁻¹ significantly varied from variety to variety. In the present study, data showed that Dhaka-1 produced the maximum number of flowers plant⁻¹ over BARI Chinabadam-8 (Figure 7 and appendix VIII). This might be due to genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes showed increased productivity of groundnut that is not supported by the present finding.

DAP= Days After Planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 7. Effect of boron and light on the number of flowers plant⁻¹ of two groundnut varieties

4.2.3.4 Effect of boron-variety interaction

Number of flowers plant⁻¹ was significantly influenced by the interaction application of variety and boron at different days after planting (DAP) (Table 11 and appendix VIII). Result showed that the maximum number of flowers plant⁻¹ was produced from B_2V_1 at 60 and 90 DAP, respectively. Thought B_2V_2 treatment showed the best result during harvest compared to other interactions but there had no significant variation among the treatment interactions during harvest.

Treatment	Number of flowers plant ⁻¹ at					
	60 DAP	90 DAP	Harvest			
Boron (B) \times Variety (V)						
B_0V_1	25.33 c ^z	4.22 cd	0.28			
B_1V_1	28.39 b	7.67 b	0.44			
B_2V_1	34.33 a	10.56 a	1.06			
$\mathbf{B}_0\mathbf{V}_2$	17.89 d	2.95 d	0.39			
B_1V_2	22.72 c	3.72 cd	0.50			
B_2V_2	24.11 c	5.50 bc	1.61			
SE (±)	0.615	0.544	-			
CV	5.04 %	23.55 %	100.53 %			
Significance (<i>P</i>)						
B×V	**	**	NS			

Table 11. Effect of boron-variety interaction on the number of flowers plant⁻¹ of groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 , ** means significant at p ≤ 0.01 , NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.3.5 Interaction effect of light, boron and variety

Interaction of boron, varieties and light on number of flowers plant⁻¹ of groundnut showed an insignificant result (Table 12 and appendix VIII). Though, the result revealed that LB_2V_1 treatment produced the highest number of flowers palnt⁻¹ at 60 and 90 DAP, respectively and at harvest LB_2V_2 produced the maximum number of flowers plant⁻¹ over other interactions but there had no significant variations among treatment interactions.

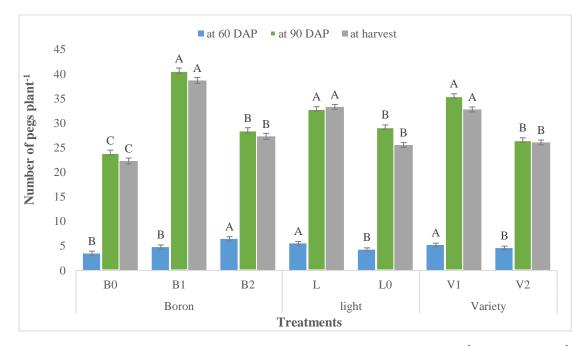
Treatment	Number of flowers plant ⁻¹ at		nt⁻¹ at
	60 DAP	90 DAP	Harvest
Light (L) \times Boron(B) \times Variety (V	/)		
LB_0V_1	26.22	4.56	0.33
$L_0B_0V_1$	24.44	3.89	0.22
LB_1V_1	29.22	8.78	0.56
$L_0B_1V_1$	27.56	6.56	0.33
LB_2V_1	35.33	12.44	1.45
$L_0B_2V_1$	33.33	8.67	0.67
LB_0V_2	19.55	3.11	0.44
$L_0B_0V_2$	16.22	2.78	0.33
LB_1V_2	23.22	4.00	0.56
$L_0B_1V_2$	22.22	3.44	0.43
LB_2V_2	25.11	5.55	2.22
$L_0B_2V_2$	23.11	5.44	1.00
SE (±)	-	-	-
CV	5.04 %	23.55 %	100.53 %
Significance (P)			
L×B×V	NS	NS	NS

Table 12. Interaction effect of light-boron-variety on the number of flowers plant1 of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS=Non Significant, B₀= 0 Kg B ha⁻¹, B₁= 1 Kg B ha⁻¹, B₂= 2 Kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.4 Number of pegs plant⁻¹

4.2.4.1 Effect of light


Light had a significant influenced on number of pegs plant⁻¹ of groundnut (Figure 8 and appendix IX). Light treatment always produced the highest number of pegs plant⁻¹ over control treatment. Light didn't help profuse pegging (Stalker and Wynne, 1983) that was not consisted with the present finding. This might be due to change of different locations and climatic condition.

4.2.4.2 Effect of boron

Number of pegs plant⁻¹ showed significant variation with the application of different doses of boron (Figure 8 and appendix IX). Boron at 2-kg ha⁻¹ produced the highest number of pegs plant⁻¹ at 60 DAP but B at 1-kg ha⁻¹ produced the highest number of pegs plant⁻¹ at 90 DAP and during harvest compared to control. Probably boron deficiency inhibited peg development (Smith, 1954). Naiknaware *et al.* (2015) also reported that number of pegs increased with the application of boron.

4.2.4.3 Effect of variety

Number of pegs plant⁻¹ of groundnut varied significantly from variety to variety (Figure 8 and appendix IX). Dhaka-1 produced the highest number of pegs plant⁻¹ compared to BARI Chinabadam-8 at 60, 90 DAP and at during harvest. This might be due to genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut that is not supported by the present finding.

DAP= Days After Planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 8. Effect of boron and light on the number of pegs plant⁻¹ of two groundnut varieties

4.2.4.4 Effect of boron-variety interaction

Interaction effect of boron-variety varied significantly in terms of number of pegs plant⁻¹ at all sampling dates except 30 DAP (Table 13 and appendix IX). It was observed that the B_2V_1 produced maximum number of pegs plant⁻¹ at 60 DAP but B_1V_1 produced the maximum number of pegs plant⁻¹ at rest of the sampling dates compared to others interactions.

Treatment	Number of pegs plant ⁻¹ at		
	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)			
B_0V_1	3.22	25.39 c ^z	25.33 d
B_1V_1	5.00	48.22 a	43.50 a
B_2V_1	7.33	32.89 b	29.50 c
B_0V_2	3.72	22.45 c	19.22 e
B_1V_2	4.50	33.06 b	33.83 b
B_2V_2	5.50	24.11 c	25.11 d
SE (±)	-	0.800	0.853
CV	23.59 %	7.51 %	7.66 %
Significance (P)			
B×V	NS	**	*

 Table 13. Effect of boron-variety interaction on the number of pegs plant⁻¹ of groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, ** means significant at p \leq 0.01, *means significant at p \leq 0.05, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.4.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety had an insignificant influenced on number of pegs plant⁻¹ of groundnut at all sampling dates except 90 DAP (Table 14 and appendix IX). LB_2V_1 treatment produced the highest number of pegs plant⁻¹ at 60 DAP but at 90 DAP and during harvest LB_1V_1 produced the maximum number of pegs plant⁻¹ of groundnut over other interactions.

Treatment	Number of pegs plant ⁻¹ at		nt ⁻¹ at
	60 DAP	90 DAP	Harvest
Light (L) \times Boron(B) \times Variety (V))		·
LB_0V_1	3.56	24.33 cd ^z	31.22
$L_0B_0V_1$	2.89	24.45 cd	19.44
LB_1V_1	5.33	58.22 a	46.78
$L_0B_1V_1$	4.67	38.22 b	40.22
LB_2V_1	8.22	28.00 c	34.22
$L_0B_2V_1$	6.44	37.78 b	24.78
LB_0V_2	4.11	23.78 cd	21.22
$L_0B_0V_2$	3.33	21.11 d	17.22
LB_1V_2	5.56	38.67 b	37.33
$L_0B_1V_2$	3.44	27.44 c	30.33
LB_2V_2	6.34	24.22 cd	29.00
$L_0B_2V_2$	4.67	24.00 cd	21.22
SE (±)	-	1.131	-
CV	23.59 %	7.51 %	7.66 %
Significance (<i>P</i>)			
L×B×V	NS	**	NS

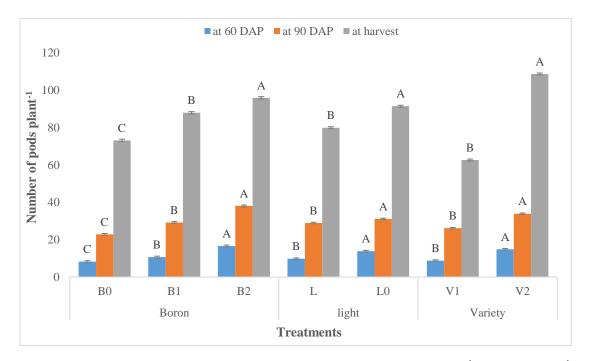
Table 14. Interaction effect of light-boron-variety on the number of pegs plant⁻¹ of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 , ** means significant at p ≤ 0.01 , NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.5 Number of pods plant⁻¹

4.2.5.1 Effect of light

Significant variation was observed for pods plant⁻¹ of groundnut from different light treatments at 60, 90 DAP and at harvest. Light treatment produced minimum number of pods plant⁻¹ at 60, 90 DAP and at harvest (Figure 9 and appendix X). In light treatment, plants produced the lowest number of pods compared to control. The present finding consisted with the finding of Bagnall and King (1991).


4.2.5.2 Effect of boron

The number of pods plant⁻¹ of groundnut was significantly influenced by the application of different levels of boron. B at 2 kg ha⁻¹ produced maximum number of pods plant⁻¹ and lowest pods was recorded from control treatment (Figure 9 and appendix X). This might be due to that B had a pronounced effect on stigma receptivity, sticky and making pollen grain fertile and enhanced the pollination (Kaisher, 2010). Even boron helped in

formation of chlorophyll, photosynthetic process & activation of enzymes as well as grain formation (Naiknaware *et al.*, 2015). The present finding consisted with the findings of Luo *et al.* (1990).

4.2.5.3 Effect of variety

Variety had a significant effect on number of pods plant⁻¹ of groundnut and BARI Chinabadam-8 produced the highest number of pods plant⁻¹ at 60, 90 DAP and during harvest. On the other hand, Dhaka-1 produced lowest number of pods plant⁻¹ at all sampling dates (Figure 9 and appendix X). This might be due to that genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

DAP= Days After Planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 9. Effect of boron and light on the number of pods plant⁻¹ of two groundnut varieties

4.2.5.4 Effect of boron-variety interaction

Interaction of doses and varieties on the number of pods plant⁻¹ showed a wide range of variations. BARI Chinabadam-8 with B-2 kg ha⁻¹ produced highest number of pods plant⁻¹ and Dhaka-1 with no boron produced the lowest number of pods plant⁻¹ (Table 15 and appendix X).

Treatment	Number of pods plant ⁻¹ at		
	60 DAP	90 DAP	Harvest
Boron (B) \times Variety (V)	-		
B_0V_1	6.22 d ^z	20.06 d	50.33 f
B_1V_1	8.45 cd	26.50 c	63.38 e
B_2V_1	11.67 bc	31.83 b	74.22 d
B_0V_2	10.28 bc	25.56 c	96.00 c
B_1V_2	12.78 b	31.83 b	112.50 b
B_2V_2	21.50 a	44.28 a	117.67 a
SE (±)	0.769	0.696	0.908
CV	15.80 %	5.42 %	2.67 %
Significance (P)			
B×V	**	**	*

 Table 15. Effect of boron-variety interaction on number of pods plant⁻¹ of groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, ** means significant at p \leq 0.01, *means significant at p \leq 0.05, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.5.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety had a significant influenced on number of pods plant⁻¹ of groundnut at all sampling dates except 60 DAP. Data revealed that the $L_0B_2V_2$ treatment produced highest number of pods plant⁻¹ but LB_0V_1 produced the lowest number of pods plant⁻¹ (Table 16 and appendix X). But at 60 DAP $L_0B_2V_2$ and LB_2V_2 gave the similar result.

Treatment	Number of pods plant ⁻¹ at		
	60 DAP	90 DAP	Harvest
$Light(L) \times Boron(B) \times Variety(V)$			
LB_0V_1	5.22	18.00 g ^z	45.67 h
$L_0B_0V_1$	7.22	22.11 fg	55 g
LB_1V_1	7.33	27.45 de	49.44 gh
$L_0B_1V_1$	9.56	25.56 def	77.33 e
LB_2V_1	10.44	33.56 c	63.78 f
$L_0B_2V_1$	12.89	30.11 cd	84.67 d
LB_0V_2	7.00	23.56 ef	94.67 c
$L_0B_0V_2$	13.56	27.56 de	97.33 c
LB_1V_2	8.33	29.78 cd	111.33 b
$L_0B_1V_2$	17.22	33.89 c	113.67 b
LB_2V_2	20.33	41.22 b	114.67 ab
$L_0B_2V_2$	22.67	47.33 a	120.67 a
SE (±)	-	0.984	1.283
CV	15.80 %	5.42 %	2.67 %
Significance (P)			
L×B×V	NS	**	**

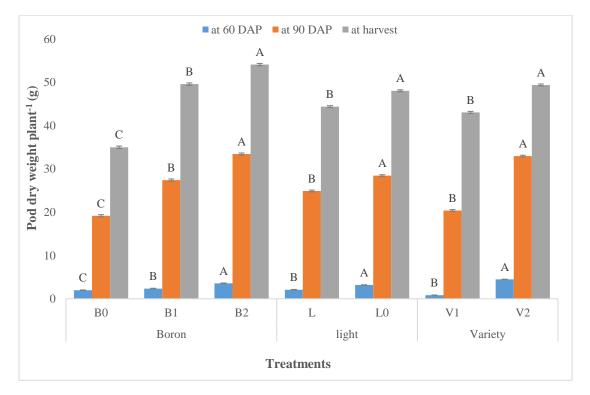
 Table 16. Interaction effect of light-boron-variety on number of pods plant⁻¹ of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, ** means significant at $p \le 0.01$, NS=Non Significant, $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (\approx 18-h light), L_0 = normal day light (\approx 12-h light), V_1 = Dhaka-1, V_2 = BARI Chinabadam-8

4.2.6 Pods dry weight plant⁻¹ (g)

4.2.6.1 Effect of light

Pods dry weight plant⁻¹ of groundnut increased gradually with throughout the harvesting. Always, control treatment produced the highest pods dry weight plant⁻¹ over the light treatment (Figure 10 and appendix XI). The reason behind the finding might be due to extend photoperiod had limited reproductive growth (Ketring, 1979). Bagnall and King (1991) stated the same findings.


4.2.6.2 Effect of boron

Pods dry weight plant⁻¹ showed significant variations with the application of different levels of boron on groundnut. Data revealed that the application of B at 2-kg ha⁻¹ produced maximum pods dry weight plant⁻¹ and control treatment produced lowest pod dry weight plant⁻¹ (Figure 10 and appendix XI). This might be due to that pods dry

weight significantly increased with the application of B (Ansari *et al.*, 2013). The present finding is agreed with the findings of Chitdeshwari & Poongothai (2003).

4.2.6.3 Effect of variety

Variety had a significant effect on pods dry weight $plant^{-1}$ of groundnut. BARI Chinabadam-8 produced the highest pods dry weight $plant^{-1}$ than to Dhaka-1 (Figure 10 and appendix XI). This might be due to genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

DAP= Days After Planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 10. Effect of boron and light on pod dry weight plant⁻¹ of two groundnut varieties

4.2.6.4 Effect of boron-variety interaction

Interaction effect of variety and boron interaction also had a significant influenced on pods dry weight plant⁻¹ of groundnut. BARI Chinabadam-8 with B at 2 kg B ha⁻¹ produced the highest pods dry weight plant⁻¹ (Table 17 and appendix XI). V_1B_0

treatment produced the lowest pods dry weight plant⁻¹. But during harvest there had no significant variation among the treatment interactions.

Treatment	Pod dry weight plant ⁻¹ (g) at		
	60DAP	90DAP	Harvest
Boron (B) \times Variety (V)			
B_0V_1	$0.50 e^{z}$	16.00 e	31.50
B_1V_1	0.76 de	21.50 d	46.33
B_2V_1	1.15 d	23.67 c	51.01
B_0V_2	3.45 c	22.33 cd	38.50
B_1V_2	3.97 b	33.33 b	52.50
B_2V_2	6.01 a	43.17 a	57.17
SE (±)	0.100	0.365	-
CV	8.48 %	2.76 %	2.18 %
Significance (P)			
B×V	**	**	NS

Table 17. Effect of boron-variety interaction on pod dry weight plant-1 of
groundnut

DAP= Days After Planting, B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, ** means significant at p \leq 0.01, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.6.5 Interaction effect of light, boron and variety

Interaction of light, boron and varieties on pods dry weight $plant^{-1}$ showed a wide range of variations at all growth stages except at 60 DAP (Table 18 and appendix XI). Result revealed that the $L_0B_2V_2$ produced highest pods dry palnt⁻¹ at 60, 90 DAP and at harvest compared to others interactions.

Treatment	Pod dry weight plant ⁻¹ (g) at		
	60 DAP	90 DAP	Harvest
Light(L)×Boron(B)×Variety(V))		
LB_0V_1	0.48	15.67 g ^z	31.33 f
$L_0B_0V_1$	0.52	16.33 g	31.67 f
LB_1V_1	0.55	20.00 f	44.00 e
$L_0B_1V_1$	0.97	23.00 de	49.33 d
LB_2V_1	1.08	23.00 de	50.02 d
$L_0B_2V_1$	1.23	24.33 d	52.00 cd
LB_0V_2	2.71	20.67 ef	34.00 f
$L_0B_0V_2$	4.18	24.00 d	43.00 e
LB_1V_2	2.86	33.00 c	51.67 cd
$L_0B_1V_2$	5.07	33.67 c	53.33 bc
LB_2V_2	4.88	37.00 b	55.33 b
$L_0B_2V_2$	7.13	49.33 a	59.00 a
SE (±)	-	0.516	0.549
CV	8.48 %	2.76 %	2.18 %
Significance (P)			
L×B×V	NS	**	**

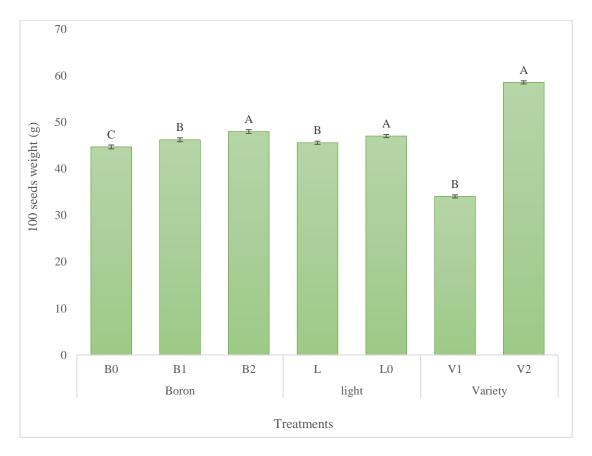
Table 18. Interaction effect of light-boron-variety on pod dry weight plant⁻¹ ofgroundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at $P \le 0.05$, **means significant at $p \le 0.01$, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.7 The hundred seeds weight (g)

4.2.7.1 Effect of light

The 100 seed weight of groundnut had a significant influenced on light treatment. It was noticed that control treatment produced the highest 100 seeds weight over the light treatment (Figure 11 and appendix XII). Probably light treatment decreased the reproductive development of groundnut Bagnall and King, (1991). The similar result was reported by Nigam *et al.* (1998).


4.2.7.2 Effect of boron

Hundred seed weight of groundnut showed significant variations with the application of different levels of boron. Data revealed that the application of B at 2-kg ha⁻¹ produced the highest 100 seeds weight over the control treatment (Figure 11 and appendix XII). This might be due to that application of boron helped to increase the 100 seed weight

Kabir *et al.* (2013). The present investigations were supported by Singaravel *et al.* (2006) and Luo *et al.* (1990).

4.2.7.3 Effect of variety

Variety had a significant effect on hundred seed weight of groundnut. BARI Chinabadam-8 produced the highest 100 seeds weight than to the Dhaka-1 (Figure 11 and appendix XII). This might be due to that genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 11. Effect of boron and light on 100 seed weight of two groundnut varieties

4.2.7.4 Effect of boron-variety interaction

Interaction effect of variety and boron interaction had no significant influenced on hundred seeds weight of groundnut. BARI Chinabadam-8 with 2-kg B ha⁻¹ produced highest hundred seed weight (Table 19 and appendix XII). B_0V_1 treatment produced the lowest 100 seeds weight.

Treatment	100 seed weight (g)
Boron (B) \times Variety (V)	
B_0V_1	32.49
B_1V_1	34.11
B_2V_1	35.62
B_0V_2	56.93
B_1V_2	58.39
B_2V_2	60.41
SE (±)	-
CV	2.28 %
Significance (P)	
B×V	NS

Table 19. Effect of boron-variety interaction on 100 seed weight of groundnut

B= Boron; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.7.5 Interaction effect of light boron and variety

Interaction of light and doses-varieties on hundred seed weight of groundnut showed an insignificant variation (Table 20 and appendix XII). Result revealed that the $L_0B_2V_2$ treatment produced highest hundred seed weight compared to other interactions.

Treatment	100 seed weight (g)	
Light (L) \times Boron (B) \times Variety (V)		
LB_0V_1	31.76	
$L_0B_0V_1$	33.21	
LB_1V_1	33.87	
$L_0B_1V_1$	34.36	
LB_2V_1	34.67	
$L_0B_2V_1$	36.56	
LB_0V_2	56.39	
$L_0B_0V_2$	57.48	
LB_1V_2	57.33	
$L_0B_1V_2$	59.45	
LB_2V_2	59.58	
$L_0B_2V_2$	59.58	
SE (±)	-	
CV	2.28 %	
Significance (P)		
L×B×V	NS	

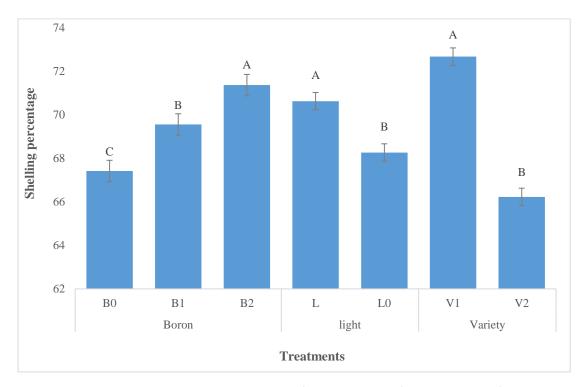
 Table 20. Interaction effect of light-boron-variety interaction on 100 seed weight of groundnut

B= Boron; L= light; V= Variety; P= Probability. Means were separated by Tukey's test at $P \le 0.05$, NS=Non Significant, $B_0 = 0 \text{ kg B ha}^{-1}$, $B_1 = 1 \text{ kg B ha}^{-1}$, $B_2 = 2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), L₀= normal day light (≈ 12 -h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.8 Shelling percentage

4.2.8.1 Effect of light

Significant variation for the shelling percentage of groundnut were observed due to light treatments (Figure 12 and appendix XII). Light produced the highest shelling percentage than to control. This might be that light had a significant effect to shell development in groundnut and make the healthier seeds. Probably during stress condition plant made defense mechanism on itself (Sharma *et al.*, 2012). Demmig-Adams and Adams, (1992) reported that plants exposed to excessive light can suffer photo-inhibition, serious damage to the photosynthetic apparatus, and degradation of photosynthetic proteins.


4.2.8.2 Effect of boron

The shelling percentage of groundnut was influenced significantly due to that different levels of boron application. The highest shelling percentage recorded from B at 2-kg ha⁻¹ and the lowest shelling percentage was observed in control treatment (Figure 12 and appendix XII). The fact that boron was involved in cell development (Naiknaware

et al., 2015). Golakiya and Patel (1986) also reported that B helped to increase the shelling percentage of groundnut.

4.2.8.3 Effect of variety

In present study, a significant variation of shelling percentage in both varieties of groundnut was observed. From the experiment it was noticed that Dhaka-1 produced the highest shelling percentage whereas, BARI Chinabadam-8 produced lowest (Figure 12 and appendix XII). This might be due to that genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 12. Effect of boron and light on shelling percentage of two groundnut varieties

4.2.8.4 Effect of boron-variety interaction

The shelling percentage of groundnut influenced insignificantly by interaction of boron variety interaction. B_2V_1 treatment produced the highest shelling percentage and B_0V_2 produced the lowest shelling percentage (Table 21 and appendix XII).

Treatment	Shelling percentage	
Boron (B) \times Variety (V)		
B_0V_1	70.95	
B_1V_1	72.85	
B_2V_1	74.22	
B_0V_2	63.89	
B_1V_2	66.27	
B_2V_2	68.52	
SE (±)	-	
CV	2.56 %	
Significance (P)		
B×V	NS	

Table 21. Effect of boron-variety interaction on shelling percentage of groundnut

B= Boron; V= Variety; P= Probability. Means were separated by Tukey's test at $P \le 0.05$, $B_0 = 0 \text{ kg B ha}^{-1}$, $B_1 = 1 \text{ kg B ha}^{-1}$, $B_2 = 2 \text{ kg B ha}^{-1}$, $V_1 = \text{Dhaka}^{-1}$, $V_2 = \text{BARI Chinabadam}^{-8}$

4.2.8.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety did not show the variations in terms of shelling percentage (Table 22 and appendix XII). Though Dhaka-1 produced highest shelling percentage with light and 2-kg B ha⁻¹ whereas, BARI Chinabdam-8 produced the lowest shelling percentage with control boron and light treatment, but there had no significant variations among the treatment interactions.

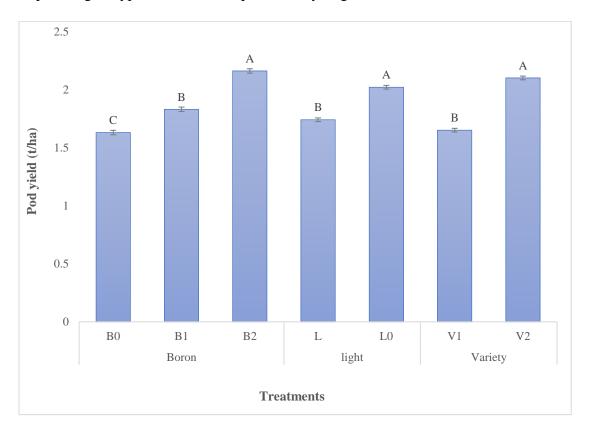
Treatment	Shelling percentage	
Light (L) × Boron (B) × Variety (V)		
LB ₀ V ₁	71.85	
$L_0B_0V_1$	70.05	
LB ₁ V ₁	73.51	
$L_0B_1V_1$	72.19	
LB_2V_1	75.23	
$L_0B_2V_1$	73.22	
LB_0V_2	64.94	
$L_0B_0V_2$	62.84	
LB_1V_2	67.45	
$L_0B_1V_2$	65.08	
LB_2V_2	70.80	
$L_0B_2V_2$	66.25	
SE (±)	-	
CV	2.56 %	
Significance (<i>P</i>)		
L×B×V	NS	

 Table 22. Interaction effect of light-boron-variety on shelling percentage of groundnut

B= Boron; L= light; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS=Non Significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.9 Pod yield (t/ha)

4.2.9.1 Effect of light


Total pod yields of groundnut showed statistically significant variations with the light treatment. From the experiment it was observed that light produced lowest pod yield (2.02 t/ha) than to control treatment (1.74 t/ha) (Figure 13 and appendix XII). This might be due to that extended photoperiod limited the reproductive development of groundnut (Ketring, 1979). The present finding is consisted with the findings of Wynne & Emery (1974).

4.2.9.2 Effect of boron

Pod yield showed significant variations due to different levels of boron application. The data revealed that B at 2- kg ha⁻¹ produced the highest total pods yield (2.16 kg ha⁻¹) and control plant produced the lowest pods yield (1.63 t/ha) (Figure 13 and appendix XII). This might be that B helped to increase the reproductive development of groundnut and finally increased the pods yield (Jena *et al.*, 2009). Naiknaware *et al.* (2015) reported that, with the application of boron increased the pod yield of groundnut.

4.2.9.3 Effect of variety

Pod yield had significant variations in both of the varieties. BARI Chinabadam-8 produced the highest pod yield (2.10 t/ha) whereas, Dhaka-1 produced the lowest pod yield (1.65 t/ha) (Figure 13 and appendix XII). This might be due to that genetic variations between the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; $B_0=0 \text{ Kg B ha}^{-1}$, $B_1=1 \text{ Kg B ha}^{-1}$, $B_2=2 \text{ Kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 13. Effect of boron and light on total pod yield of two groundnut varieties

4.2.9.4 Effect of boron-variety interaction

Pod yield was significantly influenced by the interaction of boron doses and varieties. Result showed that, the highest total pod yield was obtained from B_2V_2 (2.48 t/ha) compared to other interactions (Table 23 and appendix XII).

Treatment	Yield (t/ha)
Boron (B) x Variety (V)	
B_0V_1	1.50 d ^z
B_1V_1	1.61 d
B_2V_1	1.84 c
B_0V_2	1.76 c
B_1V_2	2.07 b
B_2V_2	2.48 a
SE (±)	0.027
CV	4.16 %
Significance (P)	
B×V	**

Table 23. Effect of boron-variety interaction on total pod yield of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 . **means significant at p ≤ 0.01 , B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.9.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety of groundnut showed significant differences on the pod yield. Total pod yield varied from B doses to doses (Table 24 and appendix XII). The data revealed that the $L_0B_2V_2$ produced the height total pod yield (2.75 t/ha) compared to other treatment interactions.

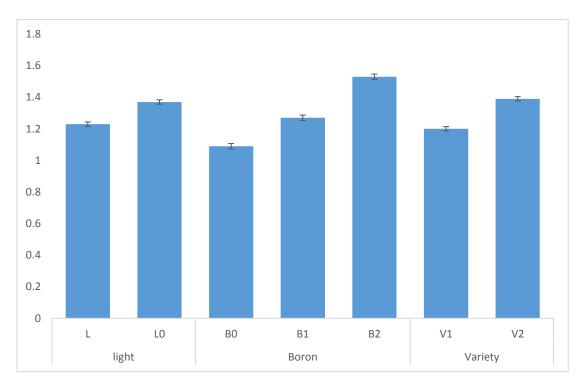
Treatment	Yield (t/ha)
Light (L) \times Boron(B) \times Variety (V)	
LB_0V_1	1.43 g ^z
$L_0B_0V_1$	1.57 fg
LB_1V_1	1.51 fg
$L_0B_1V_1$	1.70 def
LB_2V_1	1.86 cd
$L_0B_2V_1$	1.82 cd
LB_0V_2	1.61 efg
$L_0B_0V_2$	1.92 c
LB_1V_2	1.80 cde
$L_0B_1V_2$	2.34 b
LB_2V_2	2.20 b
$L_0B_2V_2$	2.75 a
SE (±)	0.038
CV	4.16 %
Significance (P)	
L×B×V	**

Table 24. Interaction effect of light-boron-variety on total pod yield of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.10 Seed yield (t ha⁻¹)

4.2.10.1 Effect of light


Seed yield showed significant variations due to imposition of light. The highest seed yield was obtained from the control treatment (L₀) (1.37 t/ha) over the light treatment (L) (1.23 t/ha) (Figure 14 and appendix XII). The fact that imposition of light decreased the reproductive development of groundnut (Bagnall and King, 1991). The similar result was reported by Nigam *et al.* (1998).

4.2.10.2 Effect of boron

Boron applied at 2 kg ha⁻¹ facilitated the highest seed yield (1.53 t/ha) than the control (1.09 t/ha) (Figure 14 and appendix XII). This might be due to that boron helped to increased seed yield of groundnut (Kabir *et al.*, 2013). The present investigated result was supported by Singaravel *et al.* (2006) and Luo *et al.* (1990).

4.2.10.3 Effect of variety

BARI Chinabadam-8 produced the highest amount of seed yield (1.39 t ha⁻¹) while Dhaka-1 showed the lowest (1.20 t ha⁻¹) (Figure 14 and appendix XII). This might be due to genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

DAP= Days after planting, B= Boron; L=Light; V= Variety; $B_0=0 \text{ kg B ha}^{-1}$, $B_1=1 \text{ kg B ha}^{-1}$, $B_2=2 \text{ kg B ha}^{-1}$, L= normal day light + 6-h extended red light at night (≈ 18 -h light), $L_0=$ normal day light (≈ 12 -h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P ≤ 0.05 . Vertical bars represent the standard error of the means.

Figure 14. Effect of boron and light on seed weight (t ha⁻¹) of two groundnut varieties

4.2.10.4 Effect of boron-variety interaction

Seed yield showed significant variations with the application of different doses of boron in both of verities. Data revealed that 2 B kg ha⁻¹ with BARI Chinabadam-8 produced the highest seed yield over other interactions (Table 25 and appendix XII).

Treatment	Seed weight (t/ha)
Boron (B) \times Variety (V)	
B_0V_1	1.07 c
B ₁ V ₁	1.12 c
B_2V_1	1.17 c
B_0V_2	1.37 b
B_1V_2	1.37 b
B_2V_2	1.69 a
SE (±)	0.024
CV	4.71
Significance (P)	
B×V	**

Table 25. Effect of boron-variety interaction on seed yield of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 , ** means significant at p ≤ 0.01 , B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.10.5 Interaction effect of light, boron and variety

Interaction between light boron and variety had a significant effect on seed yield and data showed that $L_0B_2V_2$ gave the best result compared to other combinations (Table 26 and Appendix XII).

Treatment	Seed yield (t/ha)
Light (L) \times Boron (B) \times Variety (V)	
LB_0V_1	$1.03 e^{z}$
$L_0B_0V_1$	1.04 e
LB_1V_1	1.11 e
$L_0B_1V_1$	1.21 de
LB_2V_1	1.40 bcd
$L_0B_2V_1$	1.56 b
LB_0V_2	1.10 e
$L_0B_0V_2$	1.20 de
LB_1V_2	1.23 de
$L_0B_1V_2$	1.52 bc
LB_2V_2	1.33 cd
$L_0B_2V_2$	1.82 a
SE (±)	0.033
CV	4.71
Significance (<i>P</i>)	
L×B×V	*

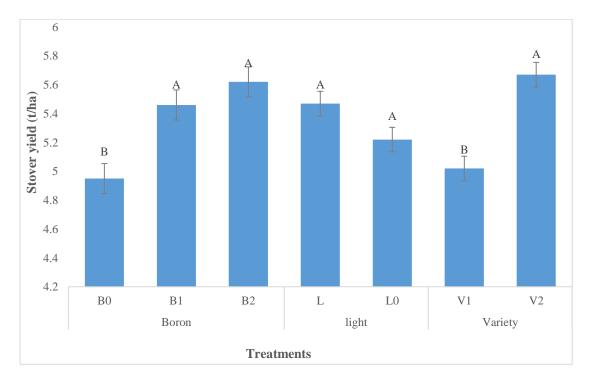
Table 26. Interaction effect of light, boron and variety on seed yield of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, *means significant at p \leq 0.05, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.11 Stover yield (t/ha)

4.2.11.1 Effect of light

There had no significant variations in the stover yield of groundnut due to the light treatment (Figure 15 and appendix XII). Light treatment and control produced statistically similar result (5.47 t/ha and 5.22 t/ha, respectively). The fact is that light helped to increase the vegetative growth in groundnut (Nigam *et al.*, 1998). Wynne *et al.* (1973) also reported that vegetative growth increased light treatment.


4.2.11.2 Effect of boron

The stover yield of groundnut was influenced significantly due to different levels of boron application (Figure 15 and appendix XII). The highest stover yield (5.62 t/ha) produced from 2-kg B ha⁻¹ which was statistically similar with 1-kg B ha⁻¹ (5.46 t/ha) and the lowest stover yield was recorded from control treatment (4.95 t/ha). This might be due to that boron helped to increase the vegetative development of groundnut

(Singaravel *et al.*, 2006). The present finding is consisted with the findings of Kabir *et al.* (2013)

4.2.11.3 Effect of variety

From this study significant variations were observed in stover yield of groundnut (Figure 15 and appendix XII). BARI chinabadam-8 produced the highest stover yield (5.67 t/ha) whereas, Dhaka-1 produced the lowest stover yield (5.02 t/ha). This might be due to genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 15. Effect of boron and light on stover yield of two groundnut varieties

4.2.11.4 Effect of boron-variety interaction

The stover yield of groundnut had no significant influenced by the boron-variety interaction (Table 27 and appendix XII). B_2V_2 produced the highest stover yield (5.99 t/ha) and V_1B_0 produced the lowest stover yield (4.60 t/ha).

Treatment	Stover yield (t/ha)
$Boron(B) \times Variety(V)$	
B_0V_1	4.60
B_1V_1	5.20
B_2V_1	5.26
B_0V_2	5.29
B_1V_2	5.72
B_2V_2	5.99
SE (±)	-
CV	6.73 %
Significance (P)	
B×V	NS

Table 27. Effect of boron-variety interaction on the stover yield of groundnut

B= Boron; V= Variety; P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS= Non significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.2.11.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety had no significant effect on treatment stover yield of groundnut (Table 28 and appendix XII).

Treatment	Stover yield (t/ha)
Light (L) \times Boron(B) \times Variety (V)	
LB_0V_1	5.09
$L_0B_0V_1$	4.13
LB_1V_1	5.27
$L_0B_1V_1$	5.13
LB_2V_1	5.33
$L_0B_2V_1$	5.18
LB_0V_2	5.29
$L_0B_0V_2$	5.29
LB_1V_2	5.80
$L_0B_1V_2$	5.64
LB_2V_2	6.02
$L_0B_2V_2$	5.95
SE (±)	-
CV	6.73 %
Significance (P)	
L×B×V	NS

Table 28. Interaction effect of light-boron-variety on the stover yield of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, NS= Non significant, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.3 Coefficient of determination

Some significant correlation among days to 1st emergence, days to 1st and 50% flowering, number of branches plant⁻¹ at 30 DAP, 60 DAP, 90 DAP and during harvest was found out (Figure, 16, 17, 18, 19). Coefficient of determination showed that with decrease of days to 1st emergence, 1st flowering and 50% flowering the pod yield of groundnut was increased. On the contrary, with the increase in number of branches plant⁻¹ at all the sampling dates, increased the pods yield of groundnut.

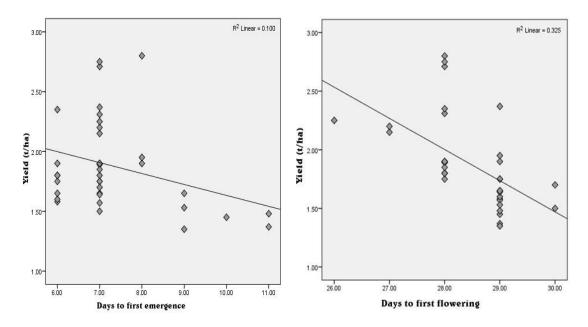


Figure 16. Relationship between days to 1st emergence and 1st flowering on yield of groundnut

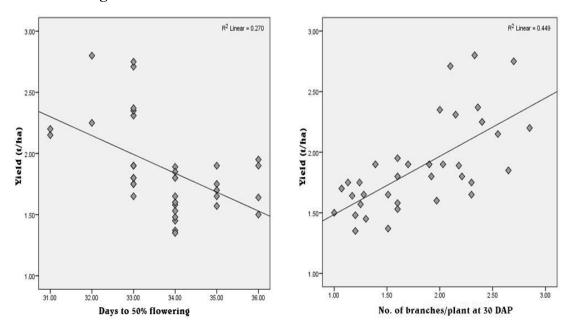


Figure 17. Relationship between days to 50% flowering & number of branches plant⁻¹ at 30 DAP on yield of groundnut

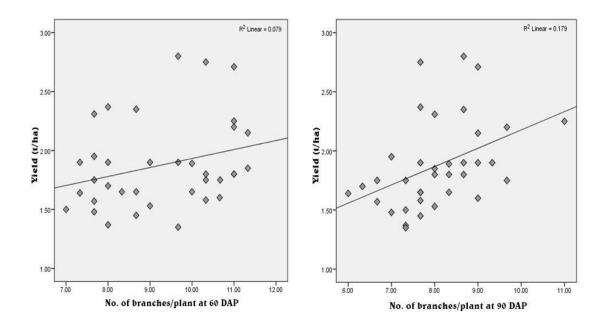


Figure 18. Relationship between number of branches plant⁻¹ at 60 DAP & number of branches plant⁻¹ at 90 DAP on yield of groundnut

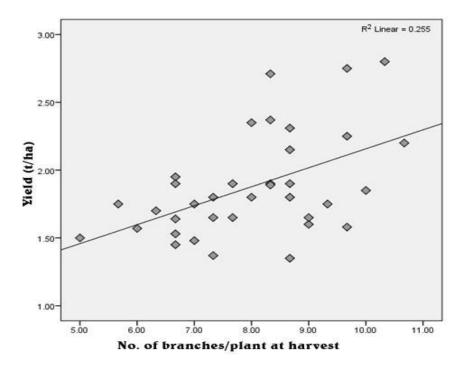
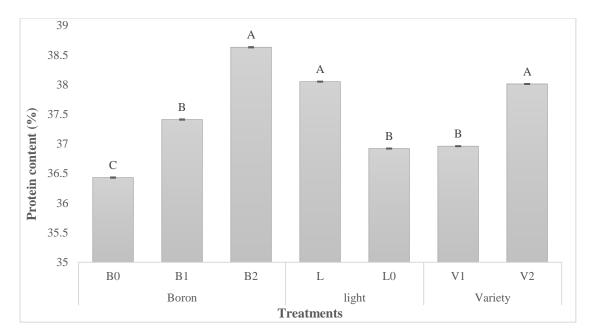


Figure 19. Relationship between number of branches plant⁻¹ during harvest on yield of groundnut

4.4 Effect of light and boron on the quality attributes of groundnut

4.4.1 Seed protein Content (%)

4.4.1.1 Effect of light


Light treatment had a significant effect on protein content of groundnut seed, while 38.05% protein was recorded from light treatment but lowest amount of protein (36.92%) was found from control treatment (Figure 20 and appendix XIII). Less or no information is available regarding the effect of light on protein content of groundnut. Present study is not supported by Han *et al.* (1996). This might be due to that change of different locations and climatic conditions.

4.4.1.2 Effect of boron

Protein content showed significant variation due to different levels of boron application (Figure 20 and appendix XIII). The data revealed that B at 2- kg ha⁻¹ produced the highest protein content (38.63%) and control plant produced the lowest amount of protein content (36.43%). This might be due to that boron helped in formation of chlorophyll, photosynthetic process & activation of enzymes as well as grain formation (Naiknaware *et al.*, 2015). Jena *et al.* (2009) reported that protein content in groundnut increased over the control due to B application.

4.4.1.3 Effect of variety

Seed protein content of groundnut had significant variations between the both varieties. BARI Chinabadam-8 produced the highest amount of protein content (38.01%) and Dhaka-1 produced the lowest amount of protein content (36.96%) (Figure 20 and appendix XIII). This might be due to genetic variation among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 20. Effect of boron and light on seed protein content of two groundnut varieties

4.4.1.4 Effect of boron-variety interaction

Protein content was significantly influenced by the interaction of boron doses and varieties (Table 29 and appendix XIII). Result showed that, the highest amount of protein content was recorded from B_2V_2 treatment (39.25%) and lowest amount recorded from B_0V_1 (36.08%).

Treatment	Protein (%)
Boron (B) \times Variety (V)	
B_0V_1	36.08 d ^z
B_1V_1	36.81 c
B_2V_1	38.00 b
B_0V_2	36.78 c
B_1V_2	38.01 b
B_2V_2	39.25 a
SE (±)	0.014
CV	0.10 %
Significance (P)	
B×V	**

Table 29. Effect of boron-variety interaction on seed protein content of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.1.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety of groundnut showed significant differences on protein content (Table 30 and appendix XIII). Protein content varied from B doses to doses. Data revealed that LB_2V_2 produced the highest protein content (39.98%) compared to other interactions.

Treatment	Protein (%)
Light (L) \times Boron(B) \times Variety (V)	
LB_0V_1	36.36 f ^z
$L_0B_0V_1$	35.80 h
LB_1V_1	37.16 e
$L_0B_1V_1$	36.46 f
LB_2V_1	38.85 b
$L_0B_2V_1$	37.15 e
LB_0V_2	37.40 d
$L_0B_0V_2$	36.16 g
LB_1V_2	38.57 c
$L_0B_1V_2$	37.44 d
LB_2V_2	39.98 a
$L_0B_2V_2$	38.53 c
SE (±)	0.020
CV	0.10 %
Significance (<i>P</i>)	
L×B×V	**

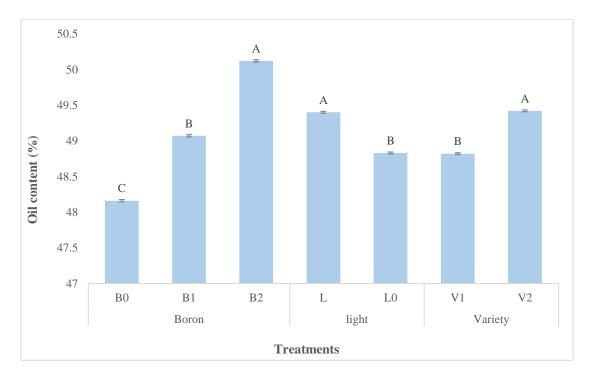
 Table 30. Interaction effect of light, boron and variety on seed protein content of groundnut

DAP= Days After Planting, B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.2 Oil content (%)

4.4.2.1 Effect of light

Light treatment had a significant effect on oil content of groundnut seed, while 49.40% oil was recorded from light treatment but lowest amount of oil content (48.83%) was found in control treatment (Figure 21 and appendix XIII). Less or no information is available regarding the effect of light on oil content of groundnut. The present finding of oil content is supported by reported result of Han *et al.* (1996).


4.4.2.2 Effect of boron

Oil content showed significant variations with the application of different levels of boron on groundnut. Data revealed that the application of B at 2-kg ha⁻¹ produced the highest oil content and control treatment produced the lowest oil content (Figure 21 and appendix XIII). This might be due to that the application of B fertilizer promoted the uptake of N, P, K (Luo *et al.*, 1990) and interaction effect of Nitrogen and Sulphur significantly enhanced the quality component of groundnut as well as oil content (Jamal

et al., 2006). Naiknaware *et al.* (2015) also found that, application of varying boron levels helped to increase the oil content of groundnut seed.

4.4.2.3 Effect of variety

Variety had a significant effect on oil content of groundnut. BARI Chinabadam-8 produced the highest oil content (49.42%) than Dhaka-1 (48.82%) (Figure 21 and appendix XIII). This might be due to that genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 21. Effect of boron and light on seed oil content of two groundnut varieties

4.4.2.4 Effect of boron-variety interaction

Interaction effect of boron-variety had a significant influenced on oil content of groundnut. BARI Chinabadam-8 with 2-kg B ha⁻¹ produced the highest amount of oil content (50.55%) & V₁B₀ produced the lowest oil content of groundnut (47.95%) (Table 31 and appendix XIII).

Treatment	%Oil
Boron (B) \times Variety (V)	
B_0V_1	47.95 f ^z
B_1V_1	48.81 d
B_2V_1	49.69 b
B_0V_2	48.36 e
B ₁ V ₂	49.33 c
B_2V_2	50.55 a
SE (±)	0.022
CV	0.10 %
Significance (P)	
B×V	**

Table 31. Effect of boron-variety interaction on seed oil content of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.2.5 Interaction effect of light, boron and variety

Interaction effect of light, boron doses and varieties on oil content of groundnut showed a wide range of variations (Table 32 and appendix XIII). Result revealed that LB_2V_2 produced the highest oil content (50.94%) and $L_0B_0V_1$ produced the lowest oil content (47.84%).

Treatment	%Oil
Light (L)× Boron (B) × Variety (V)	
LB_0V_1	48.05 g ^z
$L_0B_0V_1$	47.84 h
LB_1V_1	49.02 e
$L_0B_1V_1$	48.59 f
LB_2V_1	50.12 b
$L_0B_2V_1$	49.26 d
LB_0V_2	48.64 f
$L_0B_0V_2$	48.09 g
LB_1V_2	49.62 c
$L_0B_1V_2$	49.04 e
LB_2V_2	50.94 a
$L_0B_2V_2$	50.16 b
SE (±)	0.031
CV	0.10 %
Significance (<i>P</i>)	
L×B×V	*

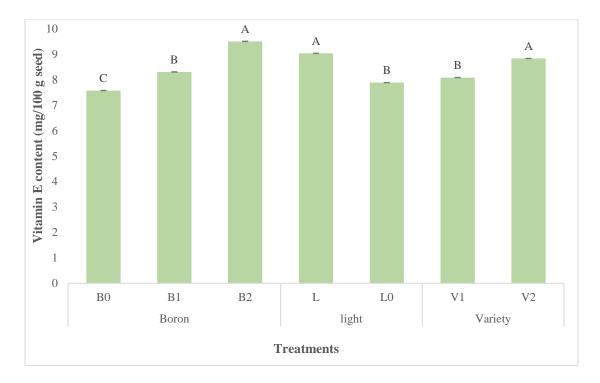
Table 32. Interaction effect of light-boron-variety on seed oil content of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.3 Vitamin E content (mg/100 g seed)

4.4.3.1 Effect of light

An additional supplementation of light had the significant result of vitamin E content (Figure 22 and appendix XIII). Light treatment had the highest result (9.03 mg/100 g seed) over the control treatment (7.88 mg/100 g seed). Vitamin E (α -tocopherol) content of groundnut varied with the supplementation of light. With the supplementation of artificial lightening at night it increased the vitamin E content of groundnut. Artificial lightening might be caused stress condition and the present finding happened due to suffering of plants from light stress. Literature revealed that plants exposed to excessive light can suffer photo-inhibition, serious damage to the photosynthetic apparatus, and degradation of photosynthetic proteins (Demmig-Adams and Adams, 1992). Mittler (2002) reported that light stress can lead to ROS accumulation and antioxidant enzymes activation. Vitamin E is one kind of antioxidant, so in our present study artificial lightening might be increased the activities of antioxidant enzyme and as a result


vitamin E content of groundnut also increased. So, the additional light correlated with each other to impart a better vitamin E content for groundnut.

4.4.3.2 Effect of boron

Vitamin E content varied from boron doses to doses. Result revealed that B at 2-kg ha⁻¹ produced the highest amount of vitamin E and control treatment produced the lowest amount of vitamin E (Figure 22 and appendix XIII). By the application of B 2-kg ha⁻¹ vitamin E content of groundnut was obtained 9.50 mg/100g seed and from the control treatment 7.57 mg/100g seed. The possible reason behind the finding might be that boron helped to uptake the highest value of N, P, K, Fe and Mn (Nasef *et al.*, 2006) and Almeida *et al.* (2015) stated that potassium fertilization improved the nutritional status of kernel of peanuts. Caretto *et al.* (2008) reported that K helped to increase vitamin E (α -tocopherol) content in Tomato. Literature revealed that potassium helped to improve the nutritional status in peanut and B helped to uptake the highest percentage of K in groundnut, so in our present study vitamin E content of groundnut might be increased for the application of boron. Because vitamin E is a nutritive value of groundnut (Source: USDA) and in our study we also applied the recommended dose of potassium fertilizer.

4.4.3.3 Effect of variety

Vitamin E content varied from variety to variety (Figure 22 and appendix XIII). BARI Chinabadam-8 produced the highest vitamin E content (8.83 mg/100 g seed) over Dhaka-1 (8.08 mg/100 g seed). This might be due to genetic variations among the varieties. Singh *et al.* (2007) reported that, in recent years, improved genotypes increased the productivity of groundnut.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 22. Effect of boron and light on vitamin E content of two groundnut varieties

4.4.3.4 Effect of boron-variety interaction

Interaction of boron doses and varieties showed a wide range of significant variations of vitamin E content (Table 33 and appendix XIII). BARI Chinabadam-8 produced the highest value of vitamin E content with B at 2-kg ha⁻¹ and the lowest value recorded from Dhaka-1 with control.

Treatment	Vitamin E (mg/100g seed)
Boron (B) \times Variety (V)	
B_0V_1	$7.26 e^{z}$
B_1V_1	7.86 d
B_2V_1	9.11 b
B_0V_2	7.88 d
B_1V_2	8.74 c
B_2V_2	9.88 a
SE (±)	0.016
CV	0.37 %
Significance (P)	
B×V	**

Table 33. Effect of boron-variety interaction on vitamin E content of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, **means significant at p \leq 0.01, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.3.5 Interaction effect of light, boron and variety

Different treatment interactions of light and boron-variety had a significant influenced on the vitamin E content of groundnut (Table 34 and appendix XIII). It was noticed that LB_2V_2 treatment interaction produced the highest vitamin E content (10.61 mg/100 g seed) whereas $L_0B_0V_1$ produced the lowest amount of vitamin E (6.71 mg/100 g seed).

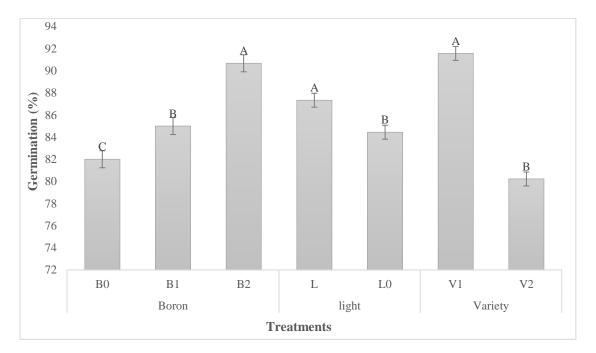
Treatment	Vitamin E (mg/100g seed)
Light (L) × Boron(B) × Variety (V)	
LB ₀ V ₁	7.81 h ^z
$L_0B_0V_1$	6.71 k
LB_1V_1	8.42 ef
$L_0B_1V_1$	7.30 ј
LB_2V_1	9.70 b
$L_0B_2V_1$	8.52 e
LB_0V_2	8.34 f
$L_0B_0V_2$	7.42 i
LB_1V_2	9.30 c
$L_0B_1V_2$	8.17 g
LB_2V_2	10.61 a
$L_0B_2V_2$	9.15 d
$SE(\pm)$	0.022
CV	0.37 %
Significance (P)	
L×B×V	**

 Table 34. Interaction effect of light, boron and variety on vitamin E content of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P ≤ 0.05 , **means significant at p ≤ 0.01 , B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

4.4.4 Germination percentage

4.4.4.1 Effect of light


Germination percentage of groundnut showed statistically significant variation with the imposition of light. It was observed that light treatment showed highest germination percentage (87.33%) than to control treatment (84.44%) (Figure 11 and appendix XIII). Little or no information available regarding this finding. This might be due to crop cultivated under artificial light helped to get viable seed.

4.4.4.2 Effect of boron

Germination percentage showed significant variation due to different levels of boron application (Figure 11 and appendix XIII). Data revealed that 2-kg B ha⁻¹ showed the highest germination percentage (90.67%) and control showed the lowest germination percentage (82.00%). This might be due to that boron helped to get viable seed (Roekkasem, 1994). The present finding is consisted with the findings of Gupta and Solanki (2012).

4.4.4.3 Effect of variety

Germination percentage had a variation among both of varieties. Dhaka-1 showed the highest germination percentage (91.56%) and BARI Chinabadam-8 showed the lowest germination percentage (80.22%) (Figure 23 and appendix XIII). Present finding is not consisted with the findings of Singh *et al.* (2007). Probably, due to that genetic variations among the varieties.

B= Boron; L=Light; V= Variety; B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁=Dhaka-1, V₂= BARI Chinabadam-8. Means were separated by Tukey's test at P \leq 0.05. Vertical bars represent the standard error of the means.

Figure 23. Effect of boron and light on germination percentage of two groundnut varieties

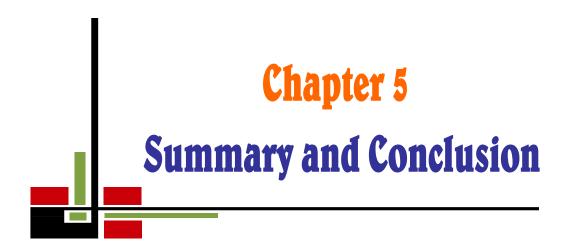
4.4.4 Effect of boron-variety interaction

Germination percentage was significantly influenced by the interaction of B doses and varieties (Table 35 and appendix XIII). Result showed that the highest germination percentage was obtained from B_2V_1 treatment (95.33%) compared to other interactions.

Treatment	Germination (%)
Boron (B) \times Variety (V)	
B_0V_1	88.00 bc ^z
B_1V_1	91.33 ab
B_2V_1	95.33 a
B_0V_2	76.00 d
B_1V_2	78.67 d
B_2V_2	86.00 c
SE (±)	1.089
CV	3.56 %
Significance (<i>P</i>)	
B×V	*

Table 35. Effect of boron-variety interaction on seed germination of groundnut

B= Boron; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, *means significant at p \leq 0.05, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, V₁= Dhaka-1, V₂= BARI Chinabadam-8


4.4.4.5 Interaction effect of light, boron and variety

Interaction effect of light, boron and variety of groundnut showed the significant differences on germination percentage (Table 36 and appendix XIII). Data revealed that the LB_2V_1 produced the highest germination percentage (98.67%) compared to other interactions.

Treatment	Germination (%)
Light (L)× Boron (B) × Variety (V)	
LB_0V_1	89.33 bc ^z
$L_0B_0V_1$	86.67 c
LB_1V_1	94.67 ab
$L_0B_1V_1$	88.00 bc
LB_2V_1	98.67 a
$L_0B_2V_1$	92.00 abc
LB_0V_2	77.33 e
$L_0B_0V_2$	74.67 e
LB_1V_2	78.67 de
$L_0B_1V_2$	78.67 de
LB_2V_2	85.33 cd
$L_0B_2V_2$	86.67 c
SE (±)	1.540
CV	3.56 %
Significance (<i>P</i>)	
L×B×V	*

 Table 36. Interaction effect of light, boron and variety on seed germination of groundnut

B= Boron; L= light; V= Variety; ^zmeans column having same letter (s) are insignificant and different later (s) statistically significant, P= Probability. Means were separated by Tukey's test at P \leq 0.05, *means significant at p \leq 0.05, B₀= 0 kg B ha⁻¹, B₁= 1 kg B ha⁻¹, B₂= 2 kg B ha⁻¹, L= normal day light + 6-h extended red light at night (\approx 18-h light), L₀= normal day light (\approx 12-h light), V₁= Dhaka-1, V₂= BARI Chinabadam-8

CHAPTER 5

SUMMARY AND CONCLUSION

The present investigation indicated that the application of boron on soil and supplementation of artificial light have a positive effect on vegetative and reproductive development as well yield and quality of groundnut.

Application of boron helps to reduce days to seedling emergence. B at 2 kg ha⁻¹ took lower times than control. In case of first emergence B_2V_2 and in case of last emergence V_1B_2 , B_0V_1 interactions take shorter time compared to other interactions. For days to flowering B 2-kg ha⁻¹ and V₂ took lower times. B_2V_2 gave the best result compared than that of other interactions for days to flowering in groundnut.

B at 2 kg ha⁻¹, light and V₁ gave the highest plant height. B_2V_1 and LB_2V_1 interaction showed the highest plant height over other interactions.

B at 1 kg ha⁻¹, light and V₂ produced the highest result in term of leaf area and interaction B_1V_2 and $L_0B_1V_2$ gave the best result compared to other interactions.

B at 2-kg ha⁻¹, light and V₂ showed the best result for number of branches plant⁻¹. B_2V_2 and LB_2V_2 interactions gave the highest number of branches plant⁻¹ over other interactions.

2-kg B ha⁻¹, light and BARI Chinabadam-8 produced highest shoot dry weight plant⁻¹. B₂V₂ & LB₂V₂ interaction produced the highest shoot dry weight plant⁻¹ compared than that of others interactions.

Number of flowers plant⁻¹ was the highest for B at 2-kg ha⁻¹, light and Dhaka-1 variety. B_2V_1 produced the highest number of flowers plant⁻¹ at 60 DAP, 90 DAP and during harvest B_2V_2 produced the highest. LB_2V_1 produced maximum flowers plant⁻¹ compared than others.

Number of pegs plant⁻¹ were maximum at 60 DAP for B at 2-kg ha⁻¹ but at 90 DAP and during harvest B-1 kg ha⁻¹ showed best result. At 60 DAP B₂V₁ showed best result for number of pegs plant⁻¹ but V₁B₁ showed statistically similar result as like others interactions. At 90 DAP and during harvest B₁V₁ showed the best result. At 60 DAP LB₂V₁ produced maximum pegs plant⁻¹ but LB₁V₁, L₀B₁V₁, L₀B₂V₁, LB₁V₂ showed statistically similar result as like others interactions. During 90 DAP and at harvest V₁B₁L produced the maximum number pegs plant⁻¹ compared than others interactions.

B at 2-kg ha⁻¹, control light and V₂ showed the best result for number of pods plant⁻¹. B₂V₂ and L₀B₂V₂ interactions gave the highest number of pods plant⁻¹ over other interactions.

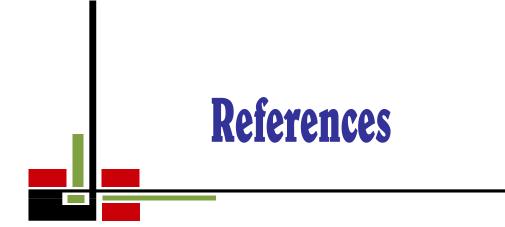
B at 2-kg ha⁻¹, control light and V₂ showed the best result for pod dry weight plant⁻¹. B₂V₂ and L₀B₂V₂ interactions gave the highest pod dry weight plant⁻¹ compared than that of other interactions.

Boron at 2-kg ha⁻¹, control light and V_2 showed the best result for 100 seed weight. B₂V₂ and L₀B₂V₂ interactions gave the best result for 100 seed weight compared than that of other interactions.

Shelling percentage were highest for boron at 2-kg ha⁻¹, light and Dhaka-1 variety. B_2V_1 and LB_2V_1 interactions showed the best result for shelling percentage over other interactions.

2-kg B ha⁻¹, control light and BARI Chinabadam-8 produced the highest pod and seed yield. B_2V_2 and $L_0B_2V_2$ interactions produced the highest yield compared than that of other interactions.

B 1-kg and 2-kg ha⁻¹ produced the highest and similar result for stover yield over control. Light and control light showed similar result where BARI Chinabadam-8 produced the highest stover yield. B_2V_2 interaction produced the highest result and $V_1B_0L_0$ interactions produced the lowest result for stover yield compared than that of other interactions.


Protein content was the highest for B at 2-kg ha⁻¹, light and BARI Chinabadam-8 variety. V_2B_2 and V_2B_2L interactions showed the best result for protein content over other interactions.

B at 2-kg ha⁻¹, light and BARI Chinabadam-8 variety produced highest percentage of oil content. B_2V_2 and LB_2V_2 interactions produced the highest oil content compared to other interactions.

Boron at 2-kg ha⁻¹, light and BARI Chinabadam-8 variety gave the highest result for Vitamin E content. B_2V_2 and LB_2V_2 interactions showed the best result for vitamin E content over other interactions.

B at 2-kg ha⁻¹, light and Dhaka-1 variety produced the highest germination percentage. B_2V_1 and LB_2V_1 interactions produced the highest germination percentage compared to that of other interactions.

Above results revealed that imposition of light did not increase the number of pods, pod dry weight, 100 seed weight, pod yield and seed yield, but stover yield. This explained that dry matter increased due to the imposition of light did not transform into the reproductive organs. Furthermore, we imposed light for 6 hours, probably the dry matter produced by the 6 hours imposed light contributed to the vegetative growth and was not enough to be partitioned into yield components. Again, quality components increased and it might be due to that imposition of light created stress condition that helped to create defense mechanism on plants and finally improved quality of seeds. To have a clear idea, we should continue the study furthermore imposing light for more than 6 hours. The present investigation also indicated that the application of boron on soil have a positive effect on growth, yield and quality of groundnut and B at 2-kg ha⁻¹ maximum times gave the best result. So further study should be carried out to verify the increasing trend of B by increasing the boron levels. Furthermore, BARI Chinabadam-8 showed the best result than Dhaka-1. Therefore, it can be concluded that the application of boron has a positive impact on improved groundnut varieties but supplementation of artificial light has both positive and negative impact on it.

REFERENCE

- El-Wahab, A. and Mohamed, A. (2008). Effect of some trace elements on growth, yield and chemical constituents of *Trachyspermum ammi* L. plants under Sinai conditions. *Res. J. Agric. Biol. Sci.*, **4**:717-724
- Ahmed, S. and Hossain, M. B. (1997). The problem of boron deficiency in crop production in Bangladesh. *Boron soils plants*. Springer Netherlands. pp. 1-5.
- Almeida, H. J., Pancelli, M. A., Prado, R. M., Cavalcante, V. S. and Cruz, F. J. R. (2015). Effect of potassium on nutritional status and productivity of peanuts in succession with sugar cane. *J. soil sci. plant nutr*, **15**(1): 01-10.
- Ansari, M. A., Prakash, N., Singh, I. M. and Sharma, P. K. (2016). Efficacy of Boron Sources on groundnut Production under North East Hill Regions. *Indian J. Extension education* 14(2):123-126.
- Ansari, M. A., Prakash, N., Singh, I. M., Sharma, P. K. and Punitha, P. (2013). Efficacy of boron sources on productivity, profitability and energy use efficiency of groundnut (*Arachis hypogaea*) under North East Hill Regions. *Indian J. Agric. Sci.*, 83(9): 959-63.
- AOAC (1990) Official methods of analyses of association of analytical chemist. USA.
- Atasie, V. N., Akinhanmi, T. F. and Ojiodu, C. C. (2009). Proximate analysis and physico-chemical properties of groundnut (*Arachis hypogaea* L.). *Pak. J. Nutr.*, 8(2): 194-197.
- Bagnall, D. J. and King, R. W. (1991). Response of peanut (*Arachis hypogea*) to temperature, photoperiod and irradiance 2. Effect on peg and pod development. *Field Crops Res.*, 26(3): 279-293.
- BARC (Bangladesh Agricultural Research Council). (2005). Fertilizer Recommendation Guide -2005. Farmgate, New Airport Road, Dhaka-1215.
- BBS (Bangladesh Bureau of Statistics). (2013). Annual Survey Report. Bangladesh Bureau of Statistics. Statistics Division. Government of the Peoples Republic of Bangladesh. Dhaka. 37.

- Bonilla, I., El-Hamdaoui, A. and Bolaños, L. (2004). Boron and calcium increase *Pisum sativum* seed germination and seedling development under salt stress. *Plant soil*, 267(1-2): 97-107.
- Caretto, S., Parente, A., Serio, F. and Santamaria, P. (2008). Influence of potassium and genotype on vitamin E content and reducing sugar of tomato fruits. *HortScience*, **43**(7): 2048-2051.
- Chitdeshwari, T. and Poongothai, S. (2003). Yield of groundnut and its nutrient uptake as influenced by Zinc, Boron and Sulphur. *Agric. Sci. Dig.*, **23**(4): 263-266.
- Chowdhury, M. F. N., Hossain, M. D., Hosen, M. and Rahman, M. S. (2015). Comparative study on chemical composition of five varieties of groundnut (*Arachis hypogaea*). World J. Agric. Sci., 11(5): 247-254.
- Cox, F. R. (1978). Effect of Quantity of Light on the Early Growth and Development of the Peanut 1. *Pean. Sci.*, **5**(1): 27-30.
- Davis, J. M., Sanders, D. C., Nelson, P. V., Lengnick, L. and Sperry, W. J. (2003). Boron improves growth, yield, quality, and nutrient content of tomato. *J. Am. Soc. Hortic. Sci.*, **128**(3): 441-446.
- Dell, B. and Huang, L. (1997). Physiological response of plants to low boron. *Plant soil*, **193**(1-2): 103-120.
- Demig-Adams, B. and Adams Lii W. W. (1992). Photoprotection and other responses of plants to high light stress. *Annu. Rev. Plant Biol.*, **43**(1):599–626.
- Devani, M. B., Shishoo, C. J., Shah, S. A. and Suhagia, B. N. (1989). Microchemical methods; Spectrophotometric Methods for microdetermination of nitrogen in Kjeldahl digest. J. Ass. Anal. Chem., 72: 953-956.
- Ejoh, S. I. and Ketiku, O. A. (2013). Vitamin E Content of Traditionally Processed Products of Two Commonly Consumed Oilseeds-Groundnut (*Arachis Hypogea*) and Melon Seed (*Citullus Vulgaris*) in Nigeria. J. Nutr. Food Sci., 3(2): 1-5.

- Gascho, G. J. and Davis, J. G. (1995). Soil fertility and plant nutrition.in H.E. Pattee and H.T. Stalker (eds.) Advances in Peanut Science. Stillwater: Am. Peanut Res. and Educ. Soc. pp. 383-418.
- Golakiya, B. A. and Patel, M. S. (1986). Effect of Calcium carbonate and boron on yield of groundnut. *Indian J. Agric. Sci.* **56** (1).
- Gupta, U. and Solanki, H. (2012). Boron: Impact on Seed Germination and Growth of Solanum melongena L. Plant Nutrient Relation. LAP LAMBERT Academic Publishing.
- Gupta, U. C. (1993). Boron and its role in crop production. CRC press.
- Han, T., Wang, J., Yang, Q. and Gai, J. (1996). Effects of post-flowering photoperiod on chemical composition of soybeans. *Zhongguo nongye kexue*, **30**(2): 47-53.
- Hangarter, R. P. (1997). Gravity, light and plant form. *Plant cell environ.*, **20**(6):796-800.
- Harris, H. C. and Brolman. J. B. (1966a). Comparison of calcium and boron deficiencies of peanut I. Physiological and yield differences. Agron. J. 58 (6):575-578.
- Harris, H. C. and Brolman. J. B. (1966b). Comparison of calcium and boron deficiencies of peanut II. Seed quality in relation to histology and viability. *Agron. J.* 58 (6):578-583.
- Harris, H. C. and Brolman, J. B. (1966c). Effect of imbalance of boron nutrition on the peanut. Agron. J. 58 (6):97-99.
- Inuwa, H. M., Aina, V. O., Gabi, B., Aimola, I. and Toyi, A. (2011). Comparative determination of antinutritional factors in Groundnut oil and Palm oil. *Adv. J. Food Sci. Technol.*, 3(4): 275-279.
- Jamal, A., Fazli, I. S., Ahmad, S. and Abdin, M. Z. (2006). Interactive effect of nitrogen and sulphur on yield and quality of groundnut (*Arachis hypogea* L.). *Korea Crop Sci.* (한국작물학회자), **51**(6): 519-522.

- Jena, D., Nayak, S. C., Mohanty, B., Jena, B. and Mukhi, S. K. (2009). Effect of boron and boron enriched organic manure on yield and quality of groundnut in boron deficient Alfisol. *Environ. Ecol.*, 27(2): 685-688.
- Jing, R. F., Zhang, Q. G., Han, L. F., Zhang, F. S. and Wei, X. Q. (1994). Effect of boric fertilizer on peanut absorption of boron and nitrogen. Soils, vol. 26, pp. 83-86.
- Kabir, M. A. (2007). Study on boron for potential yield achievement in groundnut. An M.S. thesis, Department of Crop Botany, Bangladesh Agricultural University, Mymensingh. pp.1-53
- Kabir, R., Yeasmin, S., Islam, A. M. and Sarkar, M. A. R. (2013). Effect of Phosphorus, Calcium and Boron on the Growth and Yield of Groundnut (*Arachis hypogea* L.). *Int. J. Bio-Sci. Bio-Technol*, 5(3): 51-60.
- Kaisher, M. S., Rahman, M. A., Amin, M. H. A., Amanullah, A. S. M. and Ahsanullah,A. S. M., (2010). Effects of sulphur and boron on the seed yield and protein content of mungbean. *Bangladesh Res. Pub. J.*, 3: 1181-1186.
- Ketrin, D. L. (1979). Light effects on development of an indeterminate plant. *Plant physiol.*, **64**(4): 665-667.
- Luo, X. Y., Peng, Y. C. and Wang, B. Y. (1990). Effect of boron fertilizer on yield and quality of groundnut. *Zhejiang Agric. Sci.*, (1): 30-32.
- Mengel, K. and Kirkby, E. A. (1982). "Principles of plant nutrition", 3rd Ed. Int. Potash Inst. Bern Switzerland. pp. 125.
- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. *Trends Plant Sci.*, **7**:405–410.
- Naiknware, M. D., Pawar, G. R. and Murumkar, S. B. (2015). Effect of varying levels of boron and sulphur on growth, yield and quality of summer groundnut (*Arachis hypogea* L.). *Int. J. Trop. Agric.*, **33**(2 (Part I)): 471-474.
- Nasef, M. A., Nadia, M., Amal, F. and El-Hamide, A. (2006). Response of peanut to foliar spray with boron and/or rhizobium inoculation. J. Appl. Sci. Res., 2: 1330-1337.

- Nasreen, S., Siddiky, M. A., Ahmed, R. and Rannu, R. P. (2015). Yield response of summer country bean to boron and molybdenum fertilizer. *Bangladesh J. Agric. Res.*, **40**(1): 71-76.
- Nigam, S. N., Nageswara Rao, R. C. and Wynne, J. C. (1998). Effects of temperature and photoperiod on vegetative and reproductive growth of groundnut (*Arachis hypogaea* L.). J. Agron. Crop Sci., **181**(2): 117-124.
- Nigam, S. N., Rao, R. N., Wynne, J. C., Williams, J. H., Fitzner, M. and Nagabhushanam, G. V. S. (1994). Effect and interaction of temperature and photoperiod on growth and partitioning in three groundnuts (*Arachis hypogaea* L.) genotypes1. *An. Appl. Boil.*, **125**(3): 541-552.
- Onemli, F. (2012). Impact of climate change on oil fatty acid composition of peanut (*Arachis hypogaea* L.) in three market classes. *Chilean J. Agric. Res.*, **72**(4): 483-488.
- Rashid, A., Rafique, E. and Ali, N. (1997). Micronutrient deficiencies in rainfed calcareous soils of Pakistan. II. Boron nutrition of the peanut plant. *Commun. Soil Sci. Plant Anal.*, 28(1-2): 149-159.
- Rerkasem, B., Bell, R. W. and Loneragan, J. F. (1990). Effects of seed and soil boron on early seedling growth of black and green gram (*Vigna mungo* and *V. radiata*). *Plant Nutr. Physiol. App., Springer Netherlands*. pp. 281-285.
- Roekkasem, B. (1994). Boron deficiency in food legumes in Northern Thailand. *Thai* J. Soils Fertilizers, 16(3).
- Sharma, P., Jha, A. B., Dubey, R. S. and Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot., 2012:1-26.
- Singaravel, R., Parasath, V. and Elayaraja, D. (2006). Effect of organics and micronutrients on the growth, yield of groundnut in coastal soil. *Int. J. Agric. Sci.*, 2(2): 401-402.
- Singh, A. L., Chaudhari, V. and Basu, M. S. (2007). Boron deficiency and its nutrition of groundnut in India. Adv. Plant Anim. Boron Nutr. Springer Publishers, Netherlands, 149-162.

- Singh, A. L., Jat, R. S. and Misra, J. B. (2009, April). Boron fertilization is a must to enhance peanut production in India. In The Proceedings of the International Plant Nutrition Colloquium XVI. Chicago
- Smith, B. W. (1954). Arachis hypogaea. Reproductive efficiency. Am. J. Bot., 607-616.
- SRDI (Soil Resource Development Institute). (2014). Government of the People Republic of Bangladesh.
- Stalker, H. T. and Wynne, J. C. (1983). Photoperiodic Response of Peanut Species 1. Pean. Sci., 10(2): 59-62.
- Tahir, M., Tanveer, A., Shah, T.H., Fiaz, N. and Wasaya, A. (2009). Yield response of wheat (*Triticum aestivum* L.) to boron application at different growth stages. *Pak. J. Life Soc. Sci.*, 7(1): 39–42.
- USDA (United States Department of Agriculture), <u>http://ndb.nal.usda.gov/ndb/foods/show/4800?fgcd=&manu=&lfacet=&format</u> <u>=&count=&max=35&offset=&sort=&qlookup=peanut</u>, retrieved on 5 September 2015
- Wynne, J. C., and Emery, D. A. (1974). Response of intersubspecific peanut hybrids to photoperiod. *Crop Sci.*, **14**(6): 878-880.
- Zhang, L. (2001). Effects of foliar applications of boron and dimilin on soybean yield. Mississippi Agric. For. Expt. Stn., Res. Rep., 22(16): 1-5.

APPENDICES

Appendix I. Soil test result of the experimental filed reported by Soil Resources
Development Institute (SRDI), Khamarbari, Farmgate, Dhaka

Element	Levels in the soil plot
рН	5.9
Ν	0.071%
К	0.31 meq/100g soil
Ca	6.36 meq/100g soil
Р	14.04 µg/g soil
S	15.16 µg/g soil
В	0.30 µg/g soil

Appendix II. Monthly record of air temperature, relative humidity and rainfall of the experimental site during the period of March, 2014 to July 2014

Month	Air temperature (⁰ C)		Relative hum	Rainfall	
	Maximum	Minimum	Maximum	Minimum	(mm)
					(total)
March,	37.4	20.2	80.2	32.4	3.80
2014					
April, 2014	39.4	19.4	80.2	39.2	65.60
May, 2014	38.2	19.3	89.2	40	202
June, 2014	37.2	17.4	88.4	46.3	282.7
July, 2014	35.6	18.2	88.2	55.4	107.8

Source: SAU mini weather station, Sher-e-Bangla Agricultural University, Dhaka-1207, Bangladesh

Appendix III. Effect of boron on days to emergence and days to flowering of two groundnut varieties

Sources of variation	Degrees	Mean square			
	of	Days to e	emergence	Days to f	flowering
	freedom	1 st	Last	1 st	50%
		emergence	emergence	flowering	flowering
Replication	2	0.0833	0.25000	0.11111	1.00000
Light (A)	1	5.4444	6.25000	0.69444	6.25000
Error A	2	0.1944	0.08333	0.77778	5.273E-31
Boron (B)	2	3.5833	5.58333	4.77778	15.2500
Light*Boron	2	0.8611	3.25000	0.77778	1.58333
Error A*B	8	0.1389	0.20833	0.11111	0.16667
Variety (C)	1	5.4444	4.69444	4.69444	4.69444
Light*Variety	1	16.0000	3.36111	0.02778	0.02778
Boron*Variety	2	6.3611	3.52778	0.11111	1.19444
Boron*Variety*light	2	4.0833	2.19444	0.77778	2.52778
Error A*B*C	12	0.1389	0.25000	0.16667	0.11111

Sources of variation	Degrees		Mean square				
	of		Plant heigh	nt (cm) at			
	freedom	30 DAP	60 DAP	90 DAP	Harvest		
Replication	2	0.24959	0.219	1.73	4.45		
Light (A)	1	0.11447	575.520	1418.15	3297.25		
Error A	2	0.06092	0.128	0.51	0.11		
Boron (B)	2	2.29114	15.916	139.18	208.55		
Light*Boron	2	0.02884	0.170	2.79	0.34		
Error A*B	8	0.20977	0.262	1.13	0.67		
Variety (C)	1	22.8962	160.107	198.39	412.97		
Light*Variety	1	2.500E-05	0.250	79.06	75.43		
Boron*Variety	2	0.33812	0.407	10.02	4.03		
Boron*Variety*light	2	0.08433	0.005	4.11	2.71		
Error A*B*C	12	0.45614	0.291	0.95	1.09		

Appendix IV. Effect of light and boron on plant height of two groundnut varieties

Appendix V. Effect of light and boron on leaf area of two groundnut varieties

Sources of variation	Degrees		Mean square			
	of		Leaf area	(cm ²) at		
	freedom	30 DAP	60 DAP	90 DAP	Harvest	
Replication	2	0.188	0.24194	0.02	1.829	
Light (A)	1	3.162	558.062	425.12	41.281	
Error A	2	0.287	4.978E-03	0.48	1.676	
Boron (B)	2	273.879	1118.79	649.40	163.887	
Light*Boron	2	5.760	35.9021	51.29	8.823	
Error A*B	8	1.760	0.47038	1.55	0.758	
Variety (C)	1	39.417	7743.41	3633.08	507.826	
Light*Variety	1	12.145	15.5762	56.23	22.801	
Boron*Variety	2	70.551	225.657	94.43	8.794	
Boron*Variety*light	2	8.086	18.7447	32.65	7.514	
Error A*B*C	12	0.208	1.74817	0.31	1.001	

Sources of variation	Degrees		Mean square			
	of	N	lumber of brar	nches plant ⁻¹ a	ıt	
	freedom	30 DAP	60 DAP	90 DAP	Harvest	
Replication	2	0.04323	0.1882	0.02614	0.6041	
Light (A)	1	0.60063	14.6817	4.00000	10.7693	
Error A	2	0.05423	0.2324	0.12130	0.8216	
Boron (B)	2	0.78811	12.7366	4.61547	4.2975	
Light*Boron	2	0.03606	3.1235	0.02806	0.2784	
Error A*B	8	0.04390	0.2186	0.67630	0.4376	
Variety (C)	1	6.04340	8.6534	9.71361	31.4908	
Light*Variety	1	0.04914	6.2250	0.30618	0.1508	
Boron*Variety	2	0.07602	0.2784	0.09442	0.0221	
Boron*Variety*light	2	0.01314	0.0635	0.64775	0.5193	
Error A*B*C	12	0.05276	0.2393	0.56198	0.5000	

Appendix VI. Effect of light and boron on number of branches plant⁻¹ of two groundnut varieties

Appendix VII. Effect of light and boron on shoot dry weight plant⁻¹ (g) of two groundnut varieties

Sources of variation	Degrees		Mean square			
	of	S	hoot dry weigl	nt plant ⁻¹ (g) a	at	
	freedom	30 DAP	60 DAP	90 DAP	Harvest	
Replication	2	0.04323	0.22609	0.08	5.2	
Light (A)	1	0.60063	413.106	2652.25	1024.0	
Error A	2	0.05423	0.27756	0.76	1.6	
Boron (B)	2	0.78811	369.856	5767.00	4429.4	
Light*Boron	2	0.03606	65.3729	703.00	114.3	
Error A*B	8	0.04390	0.86497	1.38	0.4	
Variety (C)	1	6.04340	911.335	3344.69	37895.1	
Light*Variety	1	0.04914	1.361E-04	1534.03	1.0	
Boron*Variety	2	0.07602	28.2926	492.44	92.5	
Boron*Variety*light	2	0.01314	81.1251	430.11	187.7	
Error A*B*C	12	0.05276	0.70729	1.55	0.5	

Sources of variation	Degrees of	Mean square			
	freedom	Numbe	er of flowers pla	ant ⁻¹ at	
		60 DAP	90 DAP	Harvest	
Replication	2	4.006	3.937	0.00331	
Light (A)	1	34.672	14.669	1.63840	
Error A	2	1.830	2.007	0.33498	
Boron (B)	2	173.929	59.257	3.54566	
Light*Boron	2	1.125	1.594	0.73786	
Error A*B	8	2.880	1.065	0.12873	
Variety (C)	1	544.522	105.678	0.52321	
Light*Variety	1	0.195	8.028	0.02668	
Boron*Variety	2	15.809	11.311	0.22395	
Boron*Variety*light	2	0.974	2.108	0.06519	
Error A*B*C	12	1.648	1.845	0.51424	

Appendix VIII. Effect of light and boron on number of flowers plant⁻¹ of two groundnut varieties

Appendix IX. Effect of light and boron on number of pegs plant ⁻¹ of tw	' 0
groundnut varieties	

Sources of variation	Degrees of	Mean square			
	freedom	Number of pegs plant ⁻¹ at			
		60 DAP	90 DAP	Harvest	
Replication	2	3.5215	0.022	1.146	
Light (A)	1	14.7200	123.432	541.803	
Error A	2	0.1191	0.760	3.412	
Boron (B)	2	26.1571	895.753	846.079	
Light*Boron	2	0.7745	338.259	2.550	
Error A*B	8	4.3330	3.175	4.349	
Variety (C)	1	3.3489	723.072	406.694	
Light*Variety	1	0.5329	9.020	20.220	
Boron*Variety	2	4.0939	112.072	21.752	
Boron*Variety*light	2	0.5314	70.456	13.660	
Error A*B*C	12	1.3255	5.427	5.082	

Sources of variation	Degrees of	Mean square			
	freedom	Number of pods plant ⁻¹ at			
		60 DAP	90 DAP	Harvest	
Replication	2	2.090	1.527	0.5	
Light (A)	1	149.410	42.228	1194.0	
Error A	2	1.541	1.365	5.4	
Boron (B)	2	221.413	704.072	1602.6	
Light*Boron	2	7.606	8.064	70.6	
Error A*B	8	4.525	4.026	5.5	
Variety (C)	1	332.090	541.881	19106.2	
Light*Variety	1	30.840	59.676	554.7	
Boron*Variety	2	31.847	49.419	24.5	
Boron*Variety*light	2	9.021	17.930	67.3	
Error A*B*C	12	3.484	2.646	5.3	

Appendix X. Effect of light and boron on number of pods plant⁻¹ of two groundnut varieties

Appendix XI. Effect of light and boron	on pods dry weight plant ⁻¹ (g) of two
groundnut varieties	

Sources of variation	Degrees of	Mean square			
	freedom	Pods dry weight plant ⁻¹ (g)at			
		60 DAP	90 DAP	Harvest	
Replication	2	0.041	0.11	0.46	
Light (A)	1	10.617	113.78	120.67	
Error A	2	0.167	1.54	0.18	
Boron (B)	2	8.430	614.25	1194.63	
Light*Boron	2	0.264	24.19	2.61	
Error A*B	8	0.053	1.17	1.02	
Variety (C)	1	121.037	1418.78	360.81	
Light*Variety	1	7.084	32.11	11.19	
Boron*Variety	2	3.217	131.19	1.08	
Boron*Variety*light	2	0.085	34.03	28.67	
Error A*B*C	12	0.050	0.54	1.02	

Appendix XII. Effect of light and boron on 100 seed weight (g), shelling percentage, yield (t/ha), Seed yield (t/ha) and stover yield (t/ha) of two groundnut varieties

Sources of variation	Degrees	Mean square				
	of	100 seed	Shelling	Yield	Seed	Stover
	freedom	weight	percentage	(t/ha)	yield	yield
		(g)			(t/ha)	(t/ha)
Replication	2	15.06	3.479	0.00220	0.00439	0.03450
Light (A)	1	18.95	50.150	0.70840	0.18347	0.54760
Error A	2	0.30	1.528	0.00257	0.00142	0.06761
Boron (B)	2	32.80	46.935	0.84254	0.57084	1.46134
Light*Boron	2	0.25	1.911	0.01744	0.01194	0.12703
Error A*B	8	0.59	2.723	0.00277	0.00290	0.16851
Variety (C)	1	5404.70	374.229	1.86323	0.34223	3.75068
Light*Variety	1	0.27	3.783	0.31547	0.09507	0.27040
Boron*Variety	2	0.21	1.427	0.10578	0.05343	0.03524
Boron*Variety*light	2	0.93	0.977	0.03492	0.01154	0.21863
Error A*B*C	12	1.12	3.149	0.00609	0.00372	0.12946

Appendix XIII. Effect of light and boron on protein content (%), oil content (%), vitamin E content (mg/100 g seed) and germination (%) of two groundnut varieties

Sources of variation	Degrees of	Mean square				
	freedom	Protein	Oil	Vitamin	Germination	
		content	content	E content	(%)	
		(%)	(%)	(mg/100		
				g seed)		
Replication	2	0.0007	0.0068	0.0004	5.78	
Light (A)	1	11.4357	2.8900	11.8795	75.11	
Error A	2	0.0004	0.0007	0.0047	11.11	
Boron (B)	2	14.5564	11.6340	11.3602	232.44	
Light*Boron	2	0.4447	0.1558	0.0724	0.44	
Error A*B	8	0.0014	0.0030	0.0018	3.11	
Variety (C)	1	9.9120	3.2280	5.1680	1156.00	
Light*Variety	1	0.1835	0.0413	0.0036	53.78	
Boron*Variety	2	0.2795	0.1619	0.0487	9.33	
Boron*Variety*light	2	0.1740	0.0327	0.0403	13.78	
Error A*B*C	12	0.0013	0.0027	0.0010	9.33	

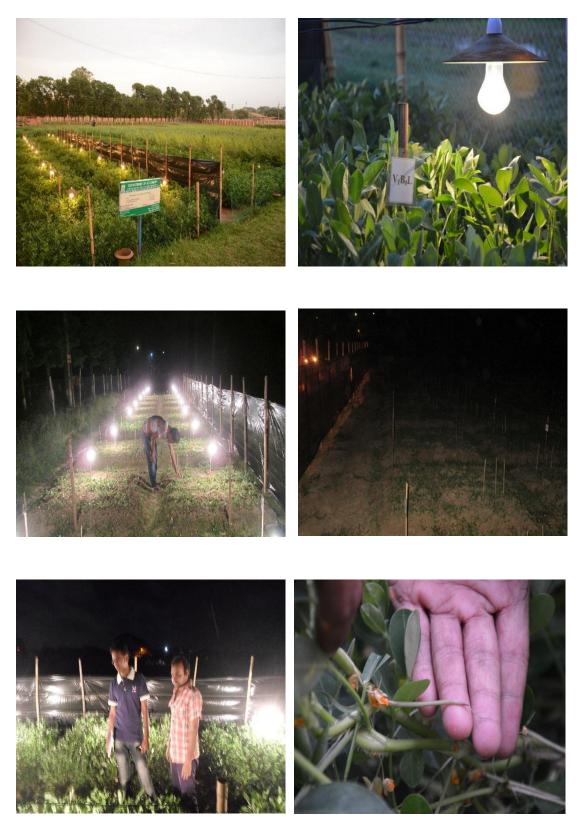


Plate 1. Field view of experimental field

Plate 2. Comparison of plant height among the treatment interactions

Plate 3. Harvested groundnut

Plate 4.1. Comparison of pods plant⁻¹ among the treatment interactions

Plate 4.2. Comparison of pods plant⁻¹ among the treatment interactions

 LB_2V_1

 LB_2V_2

 LB_1V_1

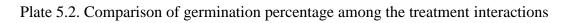
 LB_1V_2

 $LB_0V_1 \qquad \qquad LB_0V_2 \label{eq:bound}$ Plate 5.1. Comparison of germination percentage among the treatment interactions

 $L_0B_2V_1$

 $L_0B_1V_1$

 $L_0B_2V_2$


 $L_0B_1V_2$

 $V_1L_0B_0$

 $L_0B_0V_2$

