STRUCTURE AND COMPOSITION OF URBAN GREENERIES IN DHAKA SOUTH CITY CORPORATION

A THESIS

BY

ISHRAT JAHAN

AGROFORESTRY & ENVIRONMENTAL SCIENCE

SHER-E-BANGLA AGRICULTURAL UNIVERSITY

DHAKA-1207

June, 2016

STRUCTURE AND COMPOSITON OF URBAN GREENERIES IN DHAKA

SOUTH CITY CORPORATION

BY

ISHRAT JAHAN

REGISTRATION NO: 10-04176

A Thesis Submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

AGROFORESTRY & ENVIRONMENTAL SCIENCE

SEMESTER: JANUARY- JUNE, 2016

Approved by:

Dr. Md. Forhad Hossain Professor Supervisor Department of Agroforestry & Environmental Science SAU, Dhaka Md. Shahariar Jaman Assistant Professor Co-Supervisor Department of Agroforestry & Environmental Science, SAU, Dhaka

Dr. Ferzana Islam Chairman Examination committee Department of Agroforestry & Environmental Science SAU, Dhaka

DEDICATED TO MY BELOVED FAMILY MEMBERS

DEPARTMENT OF AGROFORESTRY & ENVIRONMENTAL SCIENCE Sher-e-Bangla Agricultural University (SAU) Sher-e-Bangla Nagar, Dhaka-1207

CERTIFICATE

This is to certify that the thesis entitled "STRUCTURE AND COMPOSTIION OF URBAN GREENERJES IN DHAKA SOUTH CITY CORPORATION" submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University (SAU), Dhaka in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE (MS) IN AGROFORESTRY & ENVIRONMENTAL SCIENCE, embodies the results of a piece of bonafide research work carried out by ISHRAT JAHAN Registration no. 10-04176 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that such help or source of information, as has been availed of during the course of this investigation has duly been acknowledged.

Dated: June, 2016 Place: Dhaka, Bangladesh

> Prof. Dr. Md. Forhad Hossain Supervisor Department of Agroforestry & Environmental Science SAU, Dhaka

ACKNOWLEDGEMENT

All praises belong to the almighty **Allah** who enabled me for successful completion of this research work for the degree of Master of Science (MS) in Agroforestry and Environmental Science.

I would like to express my profound gratitude and heartfelt appreciation to my reverend teacher and research supervisor **Dr. Md. Forhad Hossain**, Professor of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka for his active guidance, fruitful criticism, continuous inspiration, constructive comments and valuable suggestions throughout the entire research work and preparation of this manuscript. I also want to express my appreciation and heartfelt gratitude to my Co-supervisor **Md. Shahariar Zaman**, Assistant professor of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka for his valuable advice, constructive criticism and factual comments in upgrading the research with all possible help during the research period and preparation of the thesis.

I would like to offer my sincere thanks to Dr. Zaheer Iqbal, Deputy Conservator, RIMS unit, Forest Department, Dhaka for providing me research equipment and valuable suggestions and preparing the manuscript. I wish to take an opportunity to express my deepest respect and boundless gratitude to the honorable teachers of the Department of Agroforestry and Environmental Science, Sher-e-Bangla Agricultural University, Dhaka, for their valuable teaching, sympathetic co-operation and inspirations throughout the course of this study and research work.

I would like to express my cordial thanks to Mr. Mamun and Mr. Aminul and all other official and laboratory staff of Department of Agroforestry and Environmental Science for assisting me in the field for data collection.

I am indebted to my last but not least profound and grateful gratitude to my beloved parents, sister, grandmother, friends and other family members for their encouragement, inspiration and blessings for my higher study.

June, 2016 SAV, DHAKA The Author

ABSTRACT

Plants are the important feature of urban ecosystems and provide different environmental and socio-economic benefits. Different habitats like roadsides, parks, gardens and playgrounds in Dhaka South City Corporation were surveyed for the assessment of structure and composition of urban plants. Stratified random sampling method was used in this study. A total of 347 plant species (Tree=144, Shrub=77 & Herb=126) belonging to 113 families were recorded. Among trees and shrubs, Swietenia macrophylla, Polyalthia longifolia, Cocos nucifera, Combrectum indicum and Tabernaemonlana divaricata were recorded as the most dominant plant species. In case of tree and shrub, Fabaceae family (species % = 16.62) and in case of herbs, Poaceae family (species % = 16.62) 13.49) were found dominant. Distribution of plants is highly uneven as only six species showed >40% frequency and eight species had greater than 25% frequency. Among all the study areas, highest tree and shrub population were represented by parks (44%) followed by gardens (26%), roadsides (26%) and playgrounds (4%), respectively. Majority of herb species was represented by parks (74.6%), followed by gardens (46.83%), roadsides (18.25%) and playgrounds (4.76%), respectively. Most of the tree populations were found in between 6-9 m height class whereas majority of shrub population were found in between 1-3 m height class. In case of DBH, maximum numbers of tree and shrub population were found in between 10-15 cm DBH class. Highest IVI value was found for *Polyalthia longifolia* (IVI= 103.39%) followed by Swietenia macrophylla (IVI= 85.61%) Samanea saman (IVI= 83.44%) and Combrectum indicum (IVI= 25.29%). Average density, mean DBH, mean basal area were 1785.62 (tree/ha), 458.59 (cm/ha), 182.79 (m²/ha), respectively. This study reveals that species composition in Dhaka South City Corporation is significant whereas the structural attributes of plant population represent quite young and still developing vegetation. Findings of this research will help to manage and plan for future green infrastructure which will maintain ecosystem function, therefore, providing long term benefits for the city dwellers.

	TITLE	
CHAPTER	IIILE	NO
	ACKNOWLEDGEMENT	i
	ABSTRACT	ii
	LIST OF CONTENTS	iii
	LIST OF TABLES	vi
	LIST OF FIGURES	vii
	LIST OF PLATES	viii
	LIST OF APPENDICES	ix
	LIST OF ABBREVIATIONS AND ACRONYMS	Х
1	INTRODUCTION	1
2	REVIEW OF LITERATURE	3
2.1	Definition of urban forest	3
2.2	Importance of urban forest in Dhaka	3
2.3	Urban vegetation condition in DSCC	5
2.4	Structure and composition of plant species in Bangladesh context	6
2.5	Structure and composition of plant species in global context	8
3	MATERIALS AND METHODS	12
3.1	Study area	12
3.1.1	Geographical location and other factors of study area	12
3.2	Climatic and soil condition of study area	13
3.2.1	Climate	13
3.2.2	Water management	13
3.2.3	Soil	14
3.3	Vegetation characteristics of the study area	14
3.3.1	Trees and shrubs	14

LIST OF CONTENTS

3.3.2	Herbaceous plants	14
3.4	Data collection	18
3.4.1	Selection of sampling area	18
3.4.2	Equipment used in the field study	21
3.5	Field methods	21
3.5.1	Plot sampling	21
3.5.2	Plant species sampling	22
3.5.3	Diameter and Height measurement	22
3.6	Data analysis	23
4	RESULTS AND DISCUSSION	26
4.1	Species composition of Dhaka South City Corporation	26
4.1.1	Number of plant species in different study area of DSCC	26
4.1.2	Number of individual trees and shrubs according to the size of	27
	area in DSCC	
4.1.3	Composition of tree and shrub species according to family,	29
	genera and number of individuals in DSCC	
4.1.4	Frequency and density of dominant tree and shrub species	33
	amongst different habitats in DSCC	
4.2	Stand characteristics of study area	33
4.3	Percent of plant species according to the study area of DSCC	35
4.4	Structure of urban area in DSCC	37
4.4.1	Height class distribution	37
4.4.2	DBH class distribution	41
4.4.3	Average DBH and Height class of the plants	45
4.5	Relationship between area with frequency and density	47
4.6	Relationship between area with relative frequency and density	47
4.7	Relationship between area and mean basal area (m ² /ha)	49
4.8	Relationship between area and mean DBH (cm)	49

4.9	Important value index of the plant species in DSCC	51
4.9.1	Important value index of the plant species in parks	52
4.9.2	Important value index of the plant species in gardens	52
4.9.3	Important value index of the plant species in playgrounds	54
4.9.4	Important value index of the plant species in roadsides	54
4.10	Present status of herbaceous plant coverage in DSCC	56
4.10.1	Number of herb species according to family and genera	56
4.10.2	Percent of available herb species	56
4.10.3	Percent of herbaceous plant species according to growth form	57
4.11	Dominancy of plant species and their primary uses	60
5	SUMMARY AND CONCLUSION	67
	RECOMMENDATION	70
	REFERENCES	71
	APPENDICES	86

|--|

TABLE	TITLE	
		NO
1	Selected sampling areas for survey in DSCC	18
2	Number of plant species observed in four types of study area in DSCC	28
3	Most dominant tree species in DSCC according to the individual number (> 20)	30
4	Most dominant shrub species in DSCC according to the individual number (>10)	30
5	Number of species, genera and individual plant population according to the family	
6	Frequency and density of dominant trees and shrubs within different habitats in DSCC; (Frequency $\geq 5\%$ & Density $\geq 13\%$)	
7	Density (tree/ha), DBH (cm/ha) and basal area(m ² /ha) at different study area of DSCC	
8	Relative frequency, relative density, relative basal area and IVI of parks in DSCC (IVI value $\geq 15\%$)	53
9	Relative frequency, relative density, relative basal area and IVI of gardens in DSCC (IVI value $\geq 15\%$)	53
10	Relative frequency, relative density, relative basal area and IVI of roadsides in DSCC (IVI value $\geq 15\%$)	55
11	Relative frequency, relative density, relative basal area and IVI of 55 playgrounds in DSCC (IVI value $\geq 15\%$)	
12	List of herb species according to family and genera	58
13	Tree and shrub species identified in DSCC with their primary uses, number of individuals and percent of total	61

FIGURE	TITLE	
FIGURE	IIILE	
1	Schematic diagram of the zigzag plot layout along the roadside plantations in DSCC	22
2	Number of individual plants according to the size of area (ha)	28
3	Percent distribution of plants according to tree and shrub in different study areas	t 36
4	Percent distribution of plant population in different study areas on DSCC	f 36
5	Height class distribution of trees and shrubs in parks of DSCC	39
6	Height class distribution of trees and shrubs in gardens of DSCC	
7	Height class distribution of trees and shrubs in playgrounds of DSCC	
8	Height class distribution of trees and shrubs in roadsides of DSCC	
9	DBH class distribution of trees and shrubs in parks of DSCC	
10	DBH class distribution of trees and shrubs in gardens of DSCC	
11	DBH class distribution of trees and shrubs in playgrounds of DSCC	44
12	DBH class distribution of trees and shrubs in roadsides of DSCC	44
13	Average height of plant population according to study area	46
14	Average DBH of plant population according to study area	
15	Relationship between area with frequency and density	
16	Relationship between area with relative frequency and relative density	
17	Relationship between area and mean basal area (m ² /ha)	50
18	Relationship between area and mean DBH (cm)	50
19	Percent of herb species according to study area	59
20	Percentage of herbs according to their growth form in DSCC	59

LIST OF FIGURES

рі ате	TITLE	PAGE
PLATE	IIILE	NO
1	The study areas of Dhaka South City Corporation	15
2	Working procedures	16
3	Instruments used for experiment	17
4	The satellitic view of study areas in DSCC	20

LIST OF PLATES

APPENDIX	TITLE	
1	Weather data of the experimental site during the period from	86
	June to August, 2016	
2	Basic information of Dhaka South City Corporation	86
3	Relative frequency, relative density, relative basal area and IVI	87
	value for all the plant species in playgrounds of DSCC	
4	Relative frequency, relative density, relative basal area and IVI	87
	value for all the plant species in parks of DSCC	
5	Relative frequency, relative density, relative basal area and IVI	91
	value for all the plant species in gardens of DSCC	
6	Relative frequency, relative density, relative basal area and IVI	95
	value for all the plant species in roadsides of DSCC	
7	List of herb species with their scientific name and family	97

LIST OF APPENDICES

LIST OF ABBREVIATION AND ACRONYMS

DBH	: Diameter at breast height (over bark)
На	: Hectare
Km	: Kilometer
Mm	: Millimeter
cm	: Centimeter
m²	: meter square
m ³	: meter cube
≥	: Greater than or equal to
°C	: Degree Celsius
%	: Percentage
e.g.	: For example
et al.	: And others
IVI	: Important value index
DSCC	: Dhaka South City Corporation
DCC	: Dhaka City Corporation
UNPD	: United Nations Population Division
UN- Habitat	: United Nations Human Settlements Programme
AEZ	: Agro-Ecological Zone
FAO	: Food and Agricultural Organization

CHAPTER I

INTRODUCTION

Population pressure has increased globally in urban areas with people thronging the cities in quest of a better life (Rahman and Ahmed, 2012). About 44% of the total populations in developing countries are living in urban areas (UNPD, 2015). Dhaka is the capital of Bangladesh and also the 11th largest megacity of the world covering an area of 269.96 square kilometer with more than 18 million populations (Current affairs, June 2016). Dhaka would become the third largest mega city with an annual population growth rate of 4.4% by 2020 (UN-Habitat, 2013). The reduction of green space in Dhaka has gradually increased with the construction of building to meet up the housing demand by overlooking environmental protection (Mazumder, 2014). It is certain that, urbanization has a huge impact in the urban green spaces including parks, playgrounds, residential gardens and roadsides (Islam et al., 2015). In Dhaka, park area covers only 14.5% of the total land area (17% in north and central part and 12% in old part) whereas any city requires 25% greenery area for livable environment and to maintain a sustainable land ecosystem (Neema et al., 2014). It is alarming that only 8% vegetation currently present in Dhaka city whereas an ideal city needs about 20% green coverage (DCC, 2003). At present, almost 18 million dwellers of Dhaka city enjoy limited ecological services from several greenery areas like Ramna Park, Sohrawardy Udyan, Dhaka University campus, National Parliament Bhaban complex, Osmani Udyan, Botanical Garden and National Zoo etc. (Abid, 2013). Currently, the urban planning experts suggested that for all the cities of Bangladesh, there should be at least 1 acre of green spaces per 1000 population to maintain healthy living and to adopt this standard in Dhaka; the city needs approximately 6 square miles of area for recreation purpose (Chowdhury, 2004). Unfortunately few researches (Siddiqui, 1990; Islam et al., 2002; Chowdhury, 2004; Nehrin et al., 2004) have been conducted earlier about urban vegetation on parks and open spaces of cities in Bangladesh which are not adequate to evaluate urban forest structure and composition.

Urban forestry can be defined as the planting of trees on public lands such as roadsides, footpaths, parks, and residential gardens (Forrest and Konijnendijk, 1999). Urban forest is highly beneficial and also has established relationships between different urban forest structures through several benefits like visual quality (Schroeder, 1986), energy savings (McPherson, 1993), carbon sequestration (Rowntree and Nowak, 1991), urban heat island mitigation (Huang et al., 1987), sound reduction (Cook and Van, 1977), wildlife habitat (DeGraaf et al., 1986), and personal safety (Schroeder et al., 1984). An urban forest can be characterized in terms of composition, structure and function and these factors also enhance the environmental quality and ecological processes within urban areas (Rowntree, 1984; Chen et al., 2003). Urban forest structure means the spatial arrangement and characteristics of vegetation in relation to other objects (e.g., buildings, parks etc.) within urban areas and it also indicates the distribution of vegetation, both horizontally and vertically, in a given area (Nowak, 1994; Shawn et al., 2013). Basic informations necessary to describe urban forest structure includes species composition, frequency, density, diameter class and height class distribution and this information is usually collected during field data collection (Nowak et al., 2008; McPherson et al., 1999). Species composition can be defined as the number of plant species found in a landscape, including trees, shrubs, and herbs and it reflects different patterns of urban vegetation and modern land use system (Rowntree, 1986; Fahey et al., 2012). Additionally, different urban sites such as private gardens, parks or road networks may have different types of species composition (Godefroid et al., 2007; Kendal et al., 2012). Therefore, in this research an attempt has been taken to evaluate the structure and composition of plant species in Dhaka South City Corporation with following objectives.

Objectives:

- 1. To identify the vegetation status of DSCC
- 2. To find out the structure and composition of plant species in DSCC

CHAPTER II

REVIEW OF LITERATURE

2.1 Definition of Urban forest

Urban forestry is a recent and still developing research field but already the practice of urban forestry has started in Bangladesh. Many urban forest planners defined urban forestry for the purpose of improving the urban environment.

Grey and Deneke (1986) defined that "Urban forestry is the management of trees for their contribution to the physiological, sociological, and economic welfare of urban residents."

According to Miller (1988), "Urban forestry is an integrated approach to the planting, and management of tree populations in the urban areas to secure multiple environmental and social benefits for urban inhabitants."

Carter (1993) stated that "Different components of urban forest such as roadside trees, park trees, gardens, woodlands, riparian areas, manicured lawns the urban-rural interface and others makes up urban forest."

Konijnendijk *et al.*(2005) defined that "urban forestry is the art, science and technology of managing trees and forest resources around urban ecosystems for the sociological, economic, and aesthetic benefits trees provide to the urban society."

2.2 Importance of urban forest in Dhaka

Till now, large parts of the urban population are heavily dependent upon fuel wood in many developing countries for their domestic activities. Various kind of wood and nonwood forest products such as mushrooms, berries, medicinal herbs, rattan etc. can be provided by Urban and peri-urban plantations and green areas (Kuchelmeister, 1999).

McPherson *et al.* (1997) stated that particles and gaseous pollutants are usually absorbed by Trees and other plant species of urban area.

Kuchelmeister (1998) stated that urban green areas, like urban parks, vegetated areas, woodlands, even forest in most cities of the developed countries have recreational amenities. In poorer and developing countries urban forestry must pay attention to fulfill basic necessities.

El Lakany (1999) stated that urban vegetation reduces storm water runoff and can assist with processing wastewater, where other wastewater facilities are insufficient.

McPherson and Simpson (1999) reported that urban trees have contributions carbon sequester that help to mitigate global warming.

Elmqvist *et al.* (2003) stated that urban forest, which shows a great deal of variety, will likely be able to cope with the wide range of environmental conditions which exist in urban areas now, and the wider range that may occur in the future.

Fuller *et al.* (2007) stated that function and services of urban ecosystem also highly affected by the composition of urban forest (i.e. plant diversity).

Ansari (2008) stated that soils and moderately harsh urban climates are protected by urban greeneries through cooling air, reducing wind speeds, and shading.

Finally, it can be said that the wide range of benefits that urban green habitat provides is both practical and extensive and addresses many of the social, environmental and economic problems most urban and peri-urban localities face. In spite of that, urban greening can significantly treat many of them and create a much more adjuvant and desirable environment in which to live.

2.3 Urban greeneries condition in DSCC

Large scale plantations of trees were held in the country especially in Dhaka including the roadsides, avenues, highways, railways and other places during the last two decades. According to an estimate of the Arboriculture Division of the Works Ministry, approximately 310 hectares of total area of Dhaka city accommodate parks and gardens (Holiday, March 7, 2003). There are 27 enlisted parks/gardens in DSCC of which Osmani Uddyan, Bahadur Shah Park, Baldha Garden, Suhrawardi Uddyan, Ramna Park etc are mentionable.

Rahman *et al.*(2005) stated that the establishment of Baldha Garden by a private endeavor and Sohrawardi Uddyan at the old Race Course ground in DSCC was a highly praise worthy effort and these helped to enlarge vegetation area in this city corporation.

Nasir (2006) reported that only Ramna thana is considered to have a good no. of trees where Ramna park, Shishu Park, Suhrawardy Udyan and Dhaka University campus, all planned in the British era are the most essential green coverage considering the tree density in DSCC.

Hasan (2012) stated that at present, many new unauthorized housing projects are being developed in the old part of Dhaka. These will deteriorate and cut down the green coverage and will create unbearable pressure on the overburdened public utility. If the prevailing conditions remain unchanged then this city will definitely perish.

Farhan *et al.* (2013) stated that the limited numbers of parks are not capable to meet the demand of the urban dwellers in southern part of Dhaka city.

Neema *et al.* (2014) reported that many of the parks or open spaces have converted into garages, shopping malls or mosques and authorities of DSCC have failed to continue their responsibility to maintain the greenery of this city corporation.

Lindgren (2014) stated that Protecting and maintaining vegetative spaces in urban habitats is now considered a crucial aspect for the fulfillment of environmental quality and attaining a live-able city.

2.4 Structure and composition of plant species in Bangladesh context

Salim *et al.* (2009) reported 14 species under eight families in Juri forest range where *Tectona grandis* showed average number of stem/ha was 624 and basal area/ha was (10.36 m²/ha) followed by *Acacia auriculiformis* (0.2 m²/ha and 637 stem/ha).*Acacia auriculiformis* (0.2 m²/ha and 637 stem/ha), *Gmelina arbore*a (0.2 m²/ha and 600 stem/ha).

Sakera (2011) reported that Dulahazara Safari park had the highest average vegetation coverage (72 %), Chunati wildlife sanctuary and Sitakunda eco-park had more or less the same average vegetation coverage with 65% and 63%, respectively. *Dipterocarpus turbinatus, Acacia auricoliformis* and *Lagerstroemia speciosa etc.* occurring at all three study sites, showed highest IVI values and considered as the most dominant species.

Deb *et al.* (2013) reported 82 tree species in the street of Sylhet Metropolitan city. Here, they identified the most dominant species *Swietenia macrophylla* constituted about 40% of the total population. Average DBH of trees was 30.48 cm and the average height was 9.60 m. They found a considerable number of treeless wards and transects during the research.

Zaman and Salah (2014) studied about the composition, structure in the deciduous forestof Thakurgaon. They were enlisted A total of 126 tree species, 1,991 stems (663/ha) of \geq 10-cm girth. Tree stand density varied from 651 to 685/ha, respectively. Meliaceae, Myrtaceae, and Rubiaceae were the most abundant families within the three plot area.

Akhter *et al.* (2015) stated that plant diversity and community structure are required to take necessary actions for conservation management. Total 107 tree species (Family=37& genera=72) were recorded during the study. Density and Basal area were

(418±20.09) stem/ha and (21.10±2.62) m²/ha, respectively. *Artocarpus chama* was found dominant showing maximum IVI followed by *Schima wallichii*, *Aporosa wallichii*, and *Lithocarpus acuminate*.

Deb *et al.* (2015) demonstrated that the species diversity of treelets ($2 \text{ cm} \le \text{DBH} < 10 \text{ cm}$) is much lower than that of trees (DBH $\ge 10 \text{ cm}$) in Lawachara national park, Bangladesh. Total 347 individual trees (69 species=69, &family= 29), and 311 individual non woody plant (species=61, &family=27) were found in this study.

Mamun and Akhter (2015) stated that the highest IVI of *Acacia auriculiformis* from Chunati forest was found 40.11 followed by *Tectona grandis* (16.46). Total 993 individual trees having \geq 5 cm dbh (671trees ha) of 99 species belonging to 73 genera and 36 families were recorded from the forests of Chunati. *Dipterocarpus turbinate had shown* highest basal area (2.62 m²/ha) followed by *Acacia auriculiformis* (1.39 m²/ha).

Asaduzzaman *et al.* (2016) reported that in the forest of Chittagong, almost 64% trees were not getting favorable conditions to regenerate. The tree stem density, basal area, and wood volume were 0.49m²/ha, 1425 stem/ha, and 189.9m³/ha, respectively. Mean regeneration was significantly higher in bottom hill (14374 seedlings/ha) compared to top hill (9671 seedlings/ha).

Hossain (2016) examined a total of 2,338 individual tree stems of ≥ 10 cm dbh (468 stem/ha) of 183 tree species in Dudhpukuria-Dhopachori Sanctuary of Chittagong. Tree species richness varied from 107 to 158 species, stem density from 418 stem/ha to 540 stem/ha and basal area from 21.10 m² to 33.92 m² in all the study area.

2.5 Structure and composition of plant species in global context

McPhearson *et al.* (1997) stated that for the development of urban forests historical data can be used with information on current forest structure to better understand continuous change, current management needs, and future trends in forest health and productivity.

Annaselvam and Parthasarathy (1999) reported that species diversity of understory plants is nearly equal to the tree diversity at Western Ghats in India. Here, the most abundant species were Nilgiriunthus barbatus (IVI 29%) followed by Pellionia heyneana (12%) and most dominant family were Acanthaceae (15 species).

Shin-ichiro (1999) stated that forest structure and tree species diversity (both ≥ 4.8 cm and ≥ 10 cm diameter at breast height) decreased with altitude. The two forests on the different substrate series were similar at 700 m in structure, generic and familial composition and tree species diversity, but became dissimilar with increasing altitude. Tree species diversity was generally lower on ultra basic substrates than on non-ultra basic substrates at ≥ 1700 m.

Richardo and Vania (2002) reported trees with diameter at breast height (dbh) \geq 15.9 cm in 1992 and trees with dbh \geq 10 cm in 1997 in urban area of Brazil. During the research, very high growth and recruitment rates were found for *A. cunninghamiana*.

Burton (2006) stated that species richness was positively correlated to rural landscape characteristics and negatively related to urban characteristics in Georgia, USA. Urban sites were dominated by the non-native shrub, *Ligustrum sinense*, and several native overstory trees, mainly *Acer negundo*. Results from this study highlight the impact of urbanization on riparian forest plant biodiversity and structure.

Ramadhanil *et al.* (2008) reported about 376 plant species (tree seedlings=140, herbs and shrubs=162, ferns=29 and climbers=45) in Lore Lindu National Park, Indonesia. Urticaceae and Araceae were predominant in the study area. The study also recorded

several invasive plant species such as *Piper aduncum L., Bidens pilosa L., Ageratum conyzoides* L. and*Sclerea purpuriens*.

Zhu *et al.* (2008) stated that most trees in the urban area are relatively short, with 65% less than 10 m in Shenyang city, China. There are a total of 1,234,132 trees of 87 species in the urban area with *Populus spp., Ulmus pumila, and Salix spp.* as the three most common species and most trees in the urban area are relatively small with an average dbh of 20.55 cm.

Michael *et al.* (2009) used the Urban Forest Effects (UFORE) model in the city of Tampa to calculate tree density; size distribution; tree, shrub and surface covers. Over 80% of the trees in Tampa are smaller than 6 inches in diameter. 73% of the 1- to 3 inch diameter trees are mangroves and Brazilian pepper (*Schinus terebinthifolius*). In this study, they identified almost 93 different tree species in Tampa.

Escobedo *et al.* (2009) evaluated high diversity of native trees in the Gainesville city but this area represents with large percentage of smaller trees which indicating in most cases a younger urban forest.

Nowak *et al.* (2009) analyzed trees in Chicago which reveals that this city has about 3,585,000 trees with canopies that cover 17.2 percent of the area. Highest IVI was represented by Silver maple (17.1%) followed by Norway maple (15/4%) and Boxelder (4.8%) in the study area.

Rafael and Florian (2010) reported forest structure of understory trees (≥ 1 m height, <10 cm diameter at breast height) in two late-successional várzea forests in Brazil. Total1486 individuals and 116 species were recorded in study area. Approximately one third of the recorded species with densities ≥ 8 individuals' showed regular or random spatial distribution patterns, which suggests act on dispersal strategies and species establishment.

Trammell and Margeret (2011) stated that woody vegetation composition and structure of forests near urban interstates is an important determinant of their ability to provide these

services. Plots in the city center had 81% lower stem density, 96% higher tree seedling regeneration, and 51% greater woody plant species richness. *Robinia pseudoacacia* showed highest IVI value (22.3%) followed by *Celtis accodentalis* (20.6%).

Zhao (2013) analyzed structure and composition of woody vegetation across subtropical, peri-urban Chongming where a total of 2,251 woody plants were measured comprising 42 species in 37 genera.

Akber *et al.* (2014) stated that most of the trees were ornamental type followed by shading trees in Sahiwal city of Pakistan. 45species belonging to 29 families were recorded in study area. *Azadirachata indica, Morus alba, Eugenia jambolana* and Dalbergia sissoo had sown highest frequency among all species.

Diogo *et al.* (2014) stated the structure and floristic composition of a remnant forest into the Fortaleza city. 200 trees and shrubs belonging to 27 species, 26 genera and 18 families were recorded in study area. The average distance and the total density of the study area were $3.27m \pm 0.23$ and 980 individuals /ha respectively and for the diameter, they found an average value of $14.53cm \pm 5.6$, respectively.

Rogers *et al.* (2015) enlisted about 126 species and Trees with diameter less than 15cm constitute35% percent of the population (42%=Inner London & 34%=Outer London) in UK. This study revealed that tree density is 53trees/ha, this is lower than densities of other cities of UK.

Maradana (2016) reported structure of trees with GBH \geq 15cm in Andhra Pradesh, India. A total of 2,227 individuals (family=44 & species=129) were recorded in study area. Combretaceae, and Euphorbiaceae, showed the greatest importance value index. Most species were contributed by Euphorbiaceae and the tree density varied from 435/ha to 767/ha with an average basal area of 25.82 m²/ha.

Aladesanmi *et al.* (2016) reported fifty four tree species in Ibadan city of Nigeria where *Delonix regia* of Fabaceae family had shown the highest number of population with a

frequency of eighteen, and highest IVI value (9.39%) followed by *Azadirachta indica* with IVI of 8.28.

Gunwoo (2016) examined the urban area of Roanoke city of Virginia where vacant land represents tree canopy covers about 30.6% with most three dominant tree species in terms of leaf area were American elm, black walnut, and sycamore spp.

CHAPTER III

MATERIALS AND METHODS

3.1 Study area

3.1.1 Geographical location and other factors of study area

The study was carried out in the Dhaka South City Corporation (DSCC) and it has located between 23°77'N latitude and 90°43'E longitudes, respectively (Wikipedia, 2011). Dhaka South City Corporation (DSCC) is one of the two municipal corporations in Dhaka created when the former Dhaka City Corporation was divided. Dhaka South City Corporation is a densely populated area. It covered 109.19 square kilometer area with 7.56 million populations (Current affairs, June 2016). Dhaka South City Corporation consists of 57 wards covering the thanas of Azimpur, Maghbazar, Malibagh, Motijheel, Jatrabari, Kotwali, Sutrapur, Bangsal, Wari, Gendaria, Lalbagh, Hazaribagh, Dhanmondi, Shahbagh, New Market, Khilgaon, Kamrangirchar & some others (DSCC, Wikipedia). It has 27 parks, 10 playgrounds, 3 gardens and 2 cemeteries respectively which have the major contribution to cover the urban vegetation of this city (DSCC, website). It has also consists of 781.83 km roads and 217.38 km footpath which also help to make a urban forest structure through street tree species (Ibrahim, 2014).The other basic information about DSCC have been presented in Appendix 2.

3.2 Climatic & soil condition of study area

3.2.1 Climate

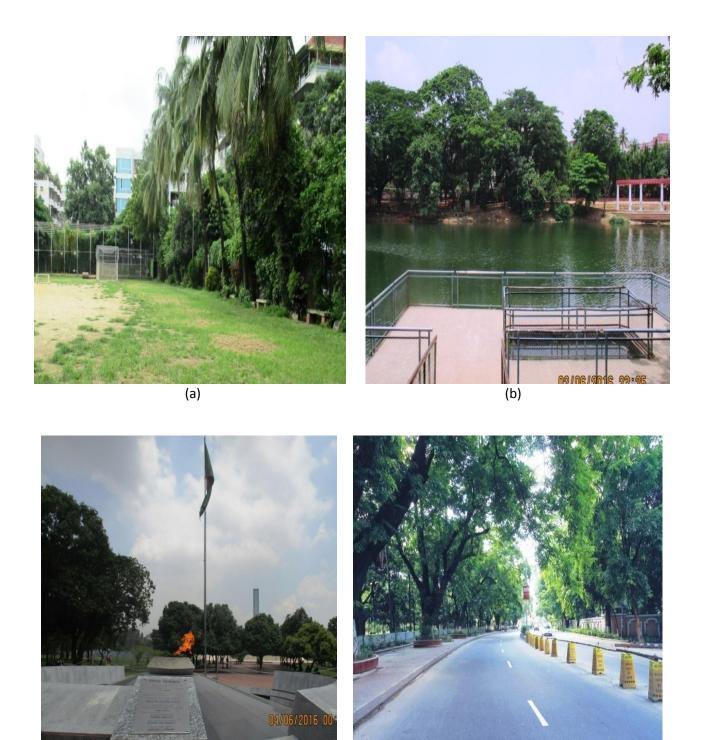
Dhaka city represents tropical and humid climatic condition (Dhaka, Wikipedia). This city can be characterized by cool and short winters, long and wet hot summers with heavy rainfall. This area is divided by three distinct meteorological seasons such as 1) summer, 2) monsoon and 3) winter (Banglapedia, 2006). At present, Dhaka experiences a tropical wet and dry climate at present according to the Köppen climate classification (DCC, Wikipedia). The city has a specific monsoon season with an annual average temperature of 25 °C and monthly means varying between 18°C in January and 29°C in August. Nearly 1,854 millimeter rainfall occurs during monsoon which represents almost 80% annual average rainfall occurs from May until the end of September (Dhaka, Wikipedia). The city also experiences tornado, thunderstorms, cyclone and other natural calamities during the pre-monsoon season. The climatic data were collected from secondary sources (http://www.weatherbase.com) and weather averages & extremes have been presented in Appendix 1.

3.2.2 Water management

Dhaka city lies at the elevation of 6 to 8 m above sea level which is flat and level (Tawhid, 2004). Most of the part of Dhaka South City Corporation is surrounded by the river Burigonga which acted as the main drainage channel in this part of Dhaka city. The natural drainage system in the greater Dhaka city comprises of several retention areas and khals (channels), which are linked to the surrounding rivers (Mowla & Islam, 2013). In DSCC the quantity of open drainage channel is 466.43 km and 495.43 km pipe which are made for proper drainage (Ibraheem, 2014). But at present, natural drainage canals and open water bodies are filled up for development works which badly affect the drainage system.

3.2.3 Soil

According to the geological origin of soils; Dhaka city is under the category of Modhupur soil tract (AEZ 28) which consists mainly of silt and clay. Soil of the experimental site mainly belongs to the medium high land and its texture contains silty loam, olive-gray with common fine to medium distinct dark yellowish brown mottles with a pH of 5.6 (UNDP & FAO, 1998).


3.3 Vegetation characteristics of the study area

3.3.1 Trees and shrubs

According to the field data collection, the total numbers of trees are found at Dhaka south city corporation belongs to 34 families under 109 genera and 135 species, respectively. The total number of shrub belongs to 29 families under 69 genera and 86 species, respectively. Out of all trees and shrubs, 64 timber species (including 56 genera and 28 families), 42 fruit species (33 genera and 23 families), 18 medicinal plant species (18 genera and 15 families), 26 ornamental plant species (23 genera and 19 families), 54 flower plant species (47 genera and 26 families), 7 ficus plant species (1 genus and 1 family), 14 palm plants (14 genera and 2 families), 2 rubber plants (1 genus and 1 family), 1 spice plant (1 genus and 1 family) are found.

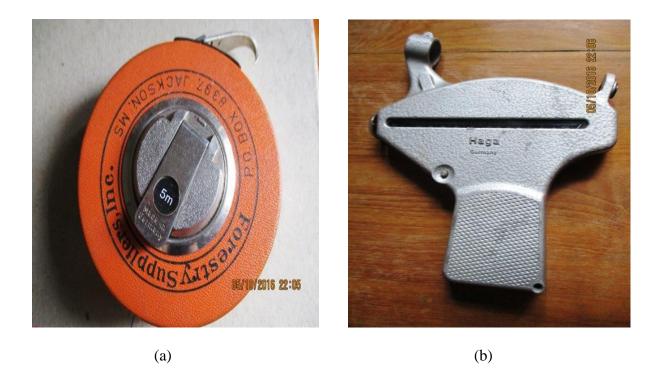
3.3.2 Herbaceous plants

Among all the experimental plots at DSCC, the total number of herbaceous plants belongs to 50 families under 114 genera and 126 species. Out of all plant species, 27 flowering herbs (including 24 genera and 21 families), 21 grass species (18 genera and 4 families), 13 medicinal species (13 genera and 9 families), 38 weed species (34 genera and 24 families), 13 ornamental species (13 genera and 9 families), 8 climbers (13 genera and 8 families) 1 fern plant (1 genus and 1 family), 3 bamboo species (1 genera and 1 family), 1 spice and 1 fruit plant (1 genus and 1 family) are found.

(c)

(d)

Plate 1: Photograph shows the study areas of Dhaka south city corporation; (a) =Playground (Dhanmondi club field), (b) = Park (Dhanmondi lake park), (c) =Garden (Sohrawardi uddan) & (d) =Roadside (Fuller road)}.



(a)

Plate 2: Photograph shows working procedures; (a) = measuring DBH in study area; (b)
= measuring plot in study area; (c) = measuring height study area; (d) = Preparing list of plant species in study site.

Plate 3: Photograph shows the instruments used for the experiment; (a) Diameter tape and (b) Haga altimeter.

3.4 Data collection

3.4.1 Selection of sampling area

Reconnaissance survey was made to the study area in order to get general information about the vegetation, and accessibility to the parks and other green spaces and a list of all tree species was prepared for further data collection. For conducting the survey the whole city corporation was divided into four categories according to its vegetation characteristics named:

- 1. Parks
- 2. Playgrounds
- 3. Gardens &
- 4. Roadsides

The sampling areas were selected through random sampling method in these study areas. The selected areas for survey are mentioned in Table-1.

 Table 1: Selected sampling areas for survey in DSCC

SL	Parks	No of plot taken	Area (acre)
No.			(approx.)
1.	Shamibag wonderland	05	1.00
2.	Bahadur Shah Park	07	1.00
3.	Sikkatuli sishu park	01	0.35
4.	Shirajuddoula park	02	0.61
5.	Gulistan park	05	0.24
6.	Hajaribagh Sishu park	01	0.98
7.	Dhanmondi 3 No park	05	0.33
8.	Ramna Park	26	88.50
9.	Central Shishu Park	08	14.5
10.	Kalabagan Lake circus Park	20	3.31
		Total:80	Total:110.82
SL	Playgrounds	No of plot taken	Area (acre)
No.			(approx.)
1.	Dhanmondi club field	03	2.00
2.	Bangladesh Field	02	0.33
3.	Kolabagan Play Ground	03	2.50

4.	Dhupkhola Play Ground	02	2.50
		Total: 10	Total:7.33
SL No.	Gardens	No of plot taken	Area (acre) (approx.)
01.	Sohrawardi Uddan	28	67.00
02.	Boldha Garden	11	3.15
03.	Osmani Uddan	10	23.14
		Total: 49	Total: 93.29
SL No.	Roads	No of plot taken	Area (Km) (approx.)
1.	Dhaka Nagar Bhaban- Sufia Kamal Hall.	03	0.66 km
2.	Dhanmondi Abahoni Playground – Dhanmondi 8/a.	05	0.84 km
3.	Doel Chottor- Bangladesh Police Headquarters.	05	1.16km
4.	Eden College-North Fuller road staff Quarter, Fuller road.	05	1.18 km
5.	Enginner's Institute - Ruposhi Bangla Hotel, Dhaka.	05	1.04
6.	Jagannath University - Bongshal bus stop.	04	1.08km
7.	Dhaka University Malchattar- Saheed Minar.	05	1.29km
8.	Matshya bhaban- Paltan bus stop	05	0.92km
9.	Polashir more, Azimpur - Buet central gate.	06	1.35 km
10	Tinnetar Majar-Shahbag Bus stop	05	1.39km
11.	TSC-Chankharpul	05	1.68km
		Total:53	Total: 12.59

(Source: DSSC Wikipedia, DSSC website & Google Earth)

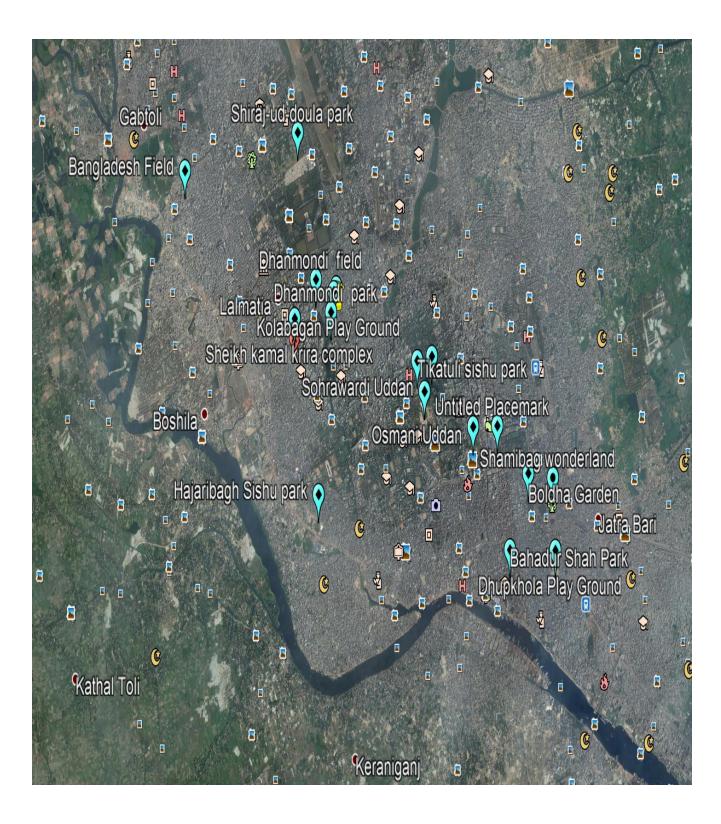
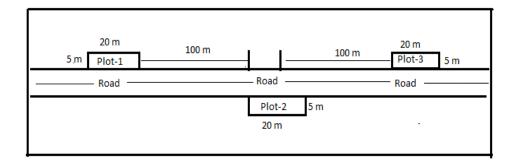
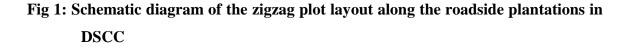


Plate 4: Photograph shows the satellitic view of study areas in DSCC. (Source: Google Earth)

SL	Name of the	Function of the equipments
No.	equipment	
1.	Measuring tape	50 m metal tape for measuring plots.
2.	Pegs	Used to measure plot areas
3.	Dia tape	2 m tape for measuring diameter at breast height
		(1.37m).
4.	Haga altimeter	Height measuring instrument for calculating height
		of an individual trees and shrubs.
5.	Recordbook	Used to write down the information about plants.
6.	Data measurement	To note the height and DBH of trees and shrubs.
	sheet	
7.	News paper and	Used to wrap and convey the specimen
	art paper	

3.4.2 Equipment used in the field study


3.5 Field methods


3.5.1 Plot sampling

The quantitative assessment of structure and composition of tree covers was done by following stratified random sampling method during June 2016 to August 2016. A list of all tree species in DSCC was prepared and four habitat types (parks, gardens, roadsides and playgrounds) were selected. In these 4 habitat types, 25 sampling areas were selected for data collection. At each habitat types the quadrates were divided into four specific sizes. These are:

SL No.	Area	Plot size (m ²)
1.	Park	15×5
2.	Garden	15×5
3.	Playground	10×5
4.	Roadsides	20×5

In parks and gardens, 20 meter plot to plot distance was maintained but in playgrounds, 10 meter distance was adopted. In roadsides, plots were taken in a zigzag manner on both the sides of road (Fig.1) in order to maintain variation and 100 meter plot to plot distance was maintained.

3.5.2 Plant species sampling

A total of 192 sample plots (parks-80, playgrounds-10, gardens-49 & roadsides-53) were taken from the four categories of habitats. All plants in each quadrat were recorded and the number of each plant species was quantified. The common species were identified directly in the field. Local people and park officials also helped in identifying some species. A list of species was made with scientific name and family found in the sampling area.

3.5.3 Diameter and Height measurement

The diameters of all identified trees & shrubs were measured at breast height (1.3 m above ground) using a diameter tape and recorded. DBH of individual trees were recorded to calculate basal area and relative basal area per hectare to identify canopy coverage of plant species in study area. Height of all sampling trees and shrubs were measured by using Haga altimeter following the percentage scale formula:

Percentage scale:

100

Where, TR= Top reading; BR= Bottom reading and HD = Horizontal distance.

3.6 Data analysis

After finishing the collection of field data, all data was organized and analyzed by using MS Excel, and SPSS software. The density (stem/ha), frequency (%), relative frequency (%), basal area (m²/ha), relative dominance and Importance Value Index (IVI) were calculated following the formulas of Moore and Chapman (1986), Shukla and Chandel (1980) and Dallmeier *et al.* (1992) for quantitative structure and composition for each trees and shrubs species.

1. Frequency

Frequency is the number of times a plant species occurs in a given number of quadrats. Frequency is usually expressed as a percentage. The concept of frequency indicates the probability of finding a species in a series of quadrats examined in an area of interest.

```
Frequency = Total no. of plots in which the species occurs x 100
Total number of plot studied
```

2. Relative frequency

Relative frequency is the frequency of each species relative to all species expressed as a percent.

Frequency of one species

Relative frequency = -

_____x 100

Sum of frequency of all species

3. Density

Density is defined as the number of individuals of a given species that occurs within a given sample unit or study area and expressed in percent.

Total no. of plots in which the species occurs

Density (stem/ha) =

- x 100

Total no. of plots studied

4. Relative density

Relative density is the number of individuals per area as a percent of the number of individuals of all species.

 Total no. of individuals of one species in all the plots

 Relative density =

 x 100

Total no. of plots studied

5. Basal area (m²/ha)

Tree basal area is the cross-sectional area (over the bark) at breast height (1.3m above the ground) measured in m². After that, sum of basal area of all the individuals of a species divided by total number and size of all plots in study area to find out the dominance of that species in that given area.

Total basal area of individual species

Basal area $(m^2/ha) =$ _____

Sample plot area (ha) x Total no. of plots studied

The basal area/ha is calculated according to the following formula

$$Ba/ha = \frac{\sum \frac{\Pi}{4} D^2}{\sum area \quad of \quad all \quad quadrats} X \qquad 10000$$

Where, Ba = Basal area in m²

D = Diameter at breast height in meter

 $\Pi = 3.14$

6. Relative Basal Area

It can be defined as the total basal area of species a as a percent of the total basal area of all species.

Total basal area of one species in all plots

Relative Basal Area = -

_____ x 100

Total basal area of all species in all plots

7. Importance Value Index

Importance values are averages of two or more of the above parameters, each of which is expressed on a relative basis (ex: relative frequency, relative density and relative basal area) and can range from 0 to 300.

Importance value Index (%) = (Relative density + Relative frequency + Relative dominance)/3

CHAPTER IV RESULTS AND DISCUSSION

Proper urban forest structure and composition assessment are the cornerstones of urban forest sustainability, because it has a strong influence on the urban forest function (McBride, 2008). Forest structure assessment includes the calculation of various physical features of the vegetation such as tree species composition, number of trees, family and genera, tree density, frequency, basal area, height class, DBH class etc (Nowak, 2009). Species composition of an area is usually calculated by identifying the species that are present and the number of individuals or percent of each species to the total plant population. This section aims to analize two or more above mentioned parameters to identify the structure and composition of DSCC.

4.1 Species composition of Dhaka South City Corporation (DSCC)

4.1.1 Number of plant species in different study area of DSCC

This study reveals that, the green sites of Dhaka South City Corporation express significant species composition. Among four types of study areas, maximum number of plant population were shown by parks (trees=118, shrubs= 60, herbs=94 & palms= 13), whereas the lowest number of species was shown in playgrounds (Table 2).

In total, 347 plant species consist of 144 tree and palm species, 77 shrubs and 126 herbs were observed in all 192 plots of four different types study area in DSCC. The number of species is quite lower compare to the 376 species (140 trees, 162 shrubs and 74 herbs) found in an urban forest, Lore lindu park of Indoneshia (Ramadhanil, 2008) and quite higher than 267 species (113 trees, 89 shrubs, 65 herbs) found in the Eastern Terai of India, (Pandey & Shukla, 2003). Diogo *et al.* 2014 enlisted only 116 species (27 trees and 89 shrubs) in the urban forest of Fortaleza, Brazil which is very low compared to the findings of this research followed by 126 species (87 trees and 39 shrubs) found in the Shenyang city of China (Zhu *et al.*, 2008).

4.1.2 Number of individual trees and shrubs according to the size of area in DSCC

The number of individuals (trees and shrubs) in four different study areas were estimated and presented in Fig.1. The figure indicates a linear relationship between the sizes of area (ha) and the number of individual plants. By comparing the number of species with the size of area it is clearly shows that with increase the area the number of plant species increases as well.

The graph also indicate that, park area (0.6 ha) showed the highest number of individual plant population (n= 1478) rather than gardens (0.37ha; n=858), roadsides (0.53 ha; n= 856) and playgrounds (0.05 ha; n= 134) (Fig 2).

SL No.		No of plant species observed			
	Area	Tree	Shrub	Herb	Palm
01	Parks	118	60	94	13
02	Gardens	97	42	59	11
03	Roadsides	65	20	23	8
04	Playgrounds	24	2	6	3

Table 2: Number of Plant species observed in four types of study area in DSCC

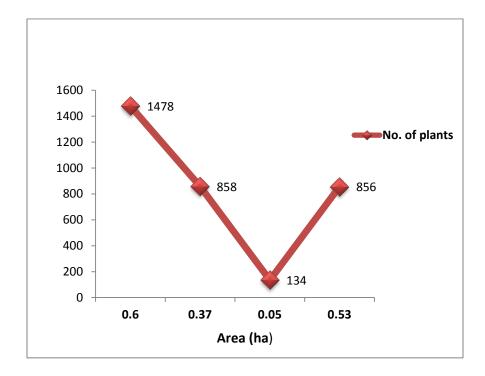


Fig 2: Number of individual plants according to the size of area (ha)

4.1.3 Composition of tree and shrub species according to family, genera and number of individuals in DSCC

A total of 221 species (trees and shrubs) distributed into 63 families and 177 genera were identified in the study area of DSCC (Table 5). The number of species, families and genera are higher in comparison to the species number (72 species, 30 families and 65 genera) found in the urban forest of Nigeria (Godwin, 2015). Whereas in Melbourne about 399 species and 52 families were found on public land (Cynnamon, 2013) which is higher than that of present study area. The tree species like; Swietenia macrophylla, Polyalthia longifolia, Cocos nucifera, Samanea saman, Artocarpus heterophyllus, Minusops elengi and Delonix regia were more prevalent in the study area with maximum number of individuals and shrub species like Combretum indicum, Tabernaemonlana divaricata, Codiaeum variegatum, Lagerstroemia lancasteri, Hibiscus rosa-sinensis and *Caesalpinia pulcherrima* were represented maximum number of individuals among all the study area (Table 3 & 4). Among tree species Swietenia macrophylla and among shrub species Combretum indicum showed highest number of individuals (n=210 and 105), respectively. As shown in Table 5, families like; Fabaceae, Arecaceae, Moraceae Meliaceae. Annonaceae, Myrtaceae, Combrectaceae, Apocynaceae, Rubiaceae, Lythraceae and Sapotaceae represented as maximum number of plant population. Fabaceae is the richest family being represented by 28 species, 22 genera and 542 individuals followed by Arecaceae (14 species, 13 genera and 337 individuals) and Moraceae (13 species, 5 genera and 113 individuals). Fabaceae family also represented as the richest family with 18 species found in the urban forest of Brazil (Diogo et al., 2014) and also in the urban area of Congo with 188 species (Felix et al., 2015) which means in most of the urban areas maximum number of species belongs to the Fabaceae family.

SL No.	Common name	Scientific name	No. of Individuals
1.	Mahgoni	Swietenia macrophylla	210
2.	Debdaru	Polyalthia longifolia	150
3.	Coconut	Cocos nucifera	99
4.	Raintree	Samanea saman	98
5.	Kathal	Artocarpus heterophyllus	95
6.	Bokul	Mimusops elengi	95
7.	Krishnochura	Delonix regia	89
8.	Mango	Mangifera indica	85
9.	Bot	Ficus bengalensis	79
10.	Rajkoroi	Albizia richardiana	62
11.	Jarul	Lagerstroemia speciosa	56
12.	Areca palm	Dypsis lutescens	54
13.	Segun	Tectona grandis	53
14.	Eucalyptus	Eucalyptus camaldulensis	44
15.	Arjun	Terminalia arjuna	44
16.	Kodom	Anthocephalus chinensis	42
17.	Shissoo	Dalbergia sissoo	41
18.	Akashmoni	Acacia auriculiformis	40
19.	Nageshwar	Mesua ferrea	37
20.	Jam	Syzygium cumini	35
21.	Ipil-ipil	Leucaena leucocephala	33
22.	Thuja	Thuja occidentalis	32
23.	Tetul	Tamarindus indica	24
24.	Ghoraneem	Melia azedarach	23
25.	Sonalu	Cassia fistula	22

Table 3: Most dominant tree species found in DSCC according to the individual number (>20)

Table 4: Most dominant shrub species in DSCC according to the individual number (>10)

SL No.	Common name	Scientific name	No. of Individuals
1.	Rongon	Combretum indicum	105
2.	Togor	Tabernaemonlana divaricata	56
3.	Croton	Codiaeum variegatum	38
4.	Cherry	Lagerstroemia lancasteri	36
5.	Joba	Hibiscus rosa-sinensis	36
6.	Radhachura	Caesalpinia pulcherrima	34
7.	Musanda	Mussaenda erythrophylla	33
8.	Duranta	Duranta erecta	31
9.	Baganbilash	Bougainvillea glabra	22
10.	Gondhoraj	Gardenia jasminoides	21
11.	Beli	Jasminum sambac	20
12.	Red sister	Cordyline fruticosa	20
13.	Shet kanchon	Bauhinia acuminata	15
14.	Hasnahena	Cestrum nocturnum	14
15.	Shefali	Nyctanthes arbor-tristis	14

SL No.	Family	No of	% of	No. of	No. of
		species	species	genera	individuals
1.	Fabaceae	28	16.62	22	542
2.	Arecaceae	14	10.33	13	337
3.	Moraceae	13	6.47	5	211
4.	Malvaceae	11	2.27	11	74
5.	Apocynaceae	9	4.14	8	135
6.	Euphorbiaceae	8	2.64	7	86
7.	Rutaceae	8	1.44	4	47
8.	Bignoniaceae	7	0.49	7	23
9.	Rubiaceae	7	3.37	7	110
10.	Myrtaceae	7	4.39	5	143
11.	Combrectaceae	7	4.72	4	154
12.	Lythraceae	7	3.50	4	114
13.	Solanaceae	5	0.83	5	42
14.	Meliaceae	5	8.46	5	276
15.	Annonaceae	4	5.40	4	176
16.	Anacardiaceae	4	2.82	4	92
17.	Sapotaceae	4	3.28	3	107
18.	Oleaceae	4	1.17	2	38
19.	Magnoliaceae	4	0.31	2	10
20.	Lecythidaceae	3	1.38	3	45
21.	Lamiaceae	3	1.81	3	59
22.	Sapindaceae	3	0.34	2	26
23.	Caesalpiniaceae	3	0.55	2	33
24.	Asparagaceae	3	0.71	2	23
25.	Ebenaceae	3	0.52	1	17
26.	Asteraceae	2	0.12	2	19
27.	Verbenaceae	2	0.74	2	24
28.	Sterculiaceae	2	0.06	2	2
29.	Phyllanthaceae	2	0.40	2	13
30.	Arucariaceae	2	0.58	1	19
31.	Oxalidaceae	2	0.71	1	23
32.	Boraginaceae	2	0.15	1	5
33.	Malpighiaceae	2	0.21	1	7
34.	Araceae	2	0.06	1	2
35.	Araliaceae	1	0.12	1	4
36.	Nyctaginaceae	1	0.67	1	22
37.	Dipterocarpaceae	1	0.09	1	3
38.	Heliconiaceae	1	0.15	1	5
39.	Rhamnaceae	1	0.55	1	18
40.	Theaceae	1	0.09	1	3
41.	Dilleniaceae	1	0.95	1	31

 Table 5: Number of species, genera and individual plant population according to the family

42.	Cycadaceae	1	0.21	1	7
43.	Bixaceae	1	0.03	1	1
44.	Cactaceae	1	0.03	1	1
45.	Thymelaeceae	1	0.28	1	9
46.	Rosaceae	1	0.55	1	18
47.	Casuarinaceae	1	0.43	1	14
48.	Elaeocarpaceae	1	0.25	1	8
49.	Clusiaceae	1	0.03	1	1
50.	Pandanaceae	1	0.12	1	4
51.	Ochnaceae	1	0.18	1	6
52.	Lauraceae	1	0.06	1	2
53.	Zygophyllaceae	1	0.06	1	2
54.	Melastomataceae	1	0.06	1	2
55.	Ericaceae	1	0.06	1	2
56.	Calophyllaceae	1	1.13	1	37
57.	Berberidaceae	1	0.12	1	4
58.	caricaceae	1	0.43	1	14
59.	Cannaceae	1	0.03	1	1
60.	Liliaceae	1	0.61	1	20
61.	Moringaceae	1	0.58	1	19
62.	cupressaceae	1	0.98	1	32
63.	Zingiberaceae	1	0.06	1	2

4.1.4 Frequency and density of dominant tree and shrub species amongst different habitats in DSCC

Frequency and density of most dominant plant species in different study areas were shown in Table 6. From the findings, it can be clearly stated that, *Swietenia macrophylla* showed highest frequency (54.72%) followed by *Polyalthia longifolia* (50.12%), *Samanea saman* (47.77%), *Artocarpus heterophyllus* (42.56%) respectively. In case of density, maximum density (145.28%) was shown by *Swietenia macrophylla* followed by *Combrectum indicum* (96.67%), *Polyalthia longifolia* (96.23%), *and Mimusops elengi* (88.68%), respectively (Table 6). From this findings, we can say that distribution of plants are highly uneven in DSCC as only 6 species represent >40% frequency among all species whereas 8 species had shown >25% frequency. Similar types of findings were reported in Shahiwal city of Pakistan where only 4 species had >50% frequency and fourteen species had >5% frequency (Akber *et al.*, 2014).

4.2 Stand characteristics of study area

Stand characteristics of plants represent the overall structural features of a given area. From the findings of this study, the highest density (2475 trees/ha), DBH (572.98cm/ha) and the highest basal area (259.81m²/ha) were found in parks. However, the average density, DBH and basal area were 1785.58 trees/ ha, 452.59 cm/ha and 182.79m²/ha, respectively (Table 7). The average density (1785.58 tree/ha) was found higher in comparison to the 279 tree/ha from urban forest in Shenyang, China (Liu and Li, 2012), and 705 tree/ha in the urban roadsides of Taiwan (Wang, 2011). The finding of very high density in DSCC compared to other study due to the higher plant population in small amount of area (ex: parks, gardens and playgrounds). The average basal area (182.79 m²/ha) was found higher than basal area (16.88 m²/ha) in Chunati Wildlife Sanctuary (Rahman and Hossain, 2003) and 27.07 m²/ha in Dudpukuria Dhopachori Forest (Hossain *et al.*, 2013) but lower than the basal area (53.5 m²/ha) in Chittagong hill tracts (Nath *et al.*, 1998).

No	Species name	Parks		Gar	Gardens		ounds	Roadsides	
		F	D	F	D	F	D	F	D
1.	Swietenia macrophylla	37.5	68.33	20.41	59.86	53.42	46.8	54.72	145.28
2.	Polyalthia longifolia	26.25	88.33	20.65	43.54	50.12	61.45	39.62	96.23
3.	Cocos nucifera	25.47	56.67	32.65	81.63	42.11	52.09	28.3	54.72
4.	Samanea saman	27.5	53.33	20.41	43.54	47.77	68.9	41.51	58.49
5.	Artocarpus heterophyllus	42.56	90	24.49	45.52	15.43	40.11	26.42	43.40
6.	Mimusops elengi	22.5	48.33	22.44	46.26	21.32	46.78	35.82	88.68
7.	Delonix regia	28.75	70.14	26.47	44.13	30.09	45.23	33.96	53.94
8.	Mangifera indica	30.18	55	36.72	74.56	20.08	63.77	30.19	43.40
9.	Ficus bengalensis	23.75	38.39	12.24	21.77	41.17	60.05	11.32	13.21
10.	Albizia richardiana	27.5	53.63	16.33	32.65	11.67	41.64	30.19	43.40
11.	Lagerstroemia speciosa	6.25	8.34	24.49	84.35	10.96	20.26	13.41	26.42
12.	Terminalia arjuna	11.25	25.08	23.10	41.82	20.12	40.6	9.43	20.75
13.	Combrectum indicum	37.50	96.67	30.61	70.75	10.33	20.5	15.09	37.74
14.	Bauhinia acuminata	10.78	15.9	8.16	13.61	10	20.62	15.09	37.74
15.	Tabernaemonlana	20.48	50	26.53	46.26	10.7	20.38	7.55	13.21
	divaricata								

Table 6. Frequency (F) and density (D) of dominant trees and shrubs within different habitats in DSCC; (Frequency ≥5% and Density ≥13%)

Table 7: Density (tree/ha), DBH (cm/ha) and basal area (m²/ha) at different study area of DSCC

SL	Species parameter		Study Area				
No.		Park	Garden	Playground	Roadside		
1.	Density(tree/ha)	2475	2359.18	680	1628.30	1785.62	
2.	DBH(cm)/ha	572.98	544.79	339.8	376.79	458.59	
3.	Basal area(m ² /ha)	259.81	194.59	137.32	139.44	182.79	

4.3 Percent of plant species according to the study area of DSCC

The bar graph shows the percentage of plant population in four different types of study area (Fig 3). Among study areas, parks (trees=62.99%, shrubs=26.45%, palms=10.55%) and gardens (trees=68.18%, shrubs=22.72%, palms=9.09%) had shown significant proportion of trees, shrubs and palm species. Whereas, in playgrounds, tree species covers 90.29% of the study area but shrubs and palm species had shown lower percentage (shrub=1.49%, palm= 6.2%). That means, playgrounds of DSCC are shown poor shrub and palm species population. Roadsides had shown very higher percentage of tree population (75.35%) compared to the shrub (13.20%) and comparatively higher percentage of palm (11.42%) than parks and gardens.

From these findings it can be clearly stated that, Playgrounds and streets of the DSCC have a scarcity of shrubs compared to the garden and parks. Park contains the highest percentage of plant population (44%) whereas gardens and streets represent similar percentage of plants (26%). Playgrounds represent the lowest population percentage (4%) (Fig 4). From these findings we can say that, number of plant population is greatly related to the size of area. A similar study was conducted in Barcelona where parks have 43.10% and streets have 17.5% tree cover whereas parks contain 35% and streets contain only 3.2% shrub population (Lydia *et al.*, 2009) which is lower in comparison to this study.

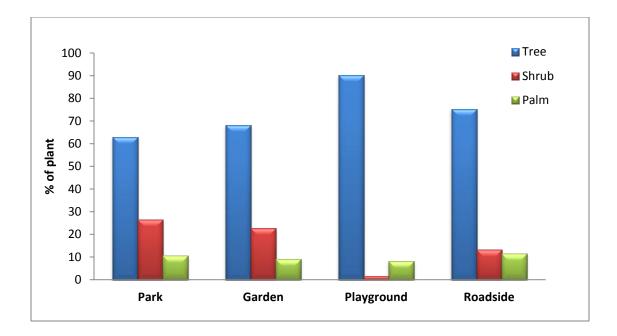


Fig 3: Percent distribution of plants according to tree, shrub and palm in different study areas

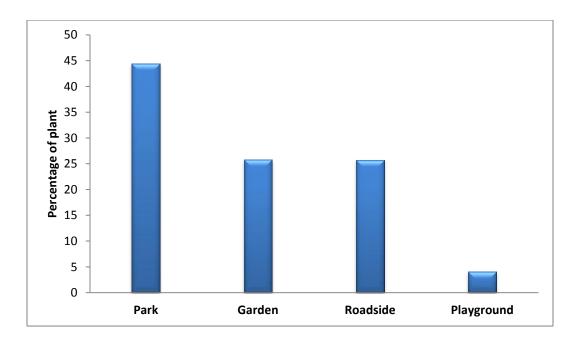


Fig 4: Percent distribution of plant population in different study areas of DSCC

4.4 Structure of urban area in DSCC

4.4.1 Height class distribution

For the height structure, the classes were defined at regular intervals of 3m and the height classes are categorized in comparison between areas. It was observed that the height differences between the four categories of study areas (parks, gardens, playgrounds and roadsides) were not statistically significant. In this section, the proportional distributions of different height classes of trees are presented.

In parks, maximum numbers of trees and palms (tree= 214 & palms= 47) were enlisted in between 6.1-9.1m height class with standard error value 8.27 for trees and 4.06 for palms where maximum numbers of shrubs (total 252) were found in between 3.1-6.1m height class with standard error value 9.00 (Fig 5). Park areas represent *Streblus asper*as the highest individual (32.1m) and *Araucaria columnaris* as the smallest (2.48m) among the tree species. In case of shrub species, *Caesalpinia pulcherrima* represented asthe highest individual (9.38m) and *Cordyline fruticosa* as the smallest (1.62m).

In gardens, maximum numbers of trees and palms (tree=156 & palms= 22) were enlisted in between 6.1-9.1m height class with standard error value 6.64 for trees and 2.52 for palms where maximum numbers of shrubs (total 128) were found in between 3.1-6.1m height class with standard error value 6.37 (Fig 6). Among all the tree species in the garden, *Swietenia macrophylla* represented as highest individual (28.54m) and *Mesua ferrea* as the smallest (3.09m). On the other hand among shrub species, *Lagerstroemia lancasteri* represented as the highest individual (3.05m) and *Lawsonia Inermis* as the smallest (1.71m).

In playgrounds, maximum numbers of trees (total 39) were found in between 6.1-9.1m height class with standard error value 3.59 where maximum number of palms and only 2 shrub species were found in betweem 1-3.1m height class with standard error value 0.86 for shrubs and 1.51 for palms (Fig 7). *Polyalthia longifolia* represented as the highest individual (17.77m) and *Terminalia arjuna* as the lowest (3.65m). Among the shrubs,

Combretum indicum was the highest individual (5.61m) and *Bauhinia acuminate* was the smallest (4.12).

In roadsides, maximum numbers of trees (total 177) were enlisted in between 6.1-9.1m height class with standard error value 8.02 and maximum numbers of palms (total 29) were found in between 9.1-12.1m height class with standard error value 3.23. However, maximum numbers of shrubs (total 54) were found in between 1-3.1m height class having standard error value 4.53 (Fig 8). Roadsides represent *Albizia richardiana* as the highest individual (29.79m) and *Psidium guajava* as the smallest (3.09m) among the tree species. Among shrub species, *Combretum indicum* represented as the highest individual (3.05m) and *Cordyline fruticosa* as the smallest (1.71m).

From these findings, it is clear that almost all the study areas trees and palms were found in between 6-9 m height class which means most of the trees are quite smaller in height. Whereas, in case of shrub species, most of them are found in between 1-3.1 m height class which means the shrub species found in the study area, represents adequate height because of regular pruning and take care. The findings of this study are lower to the research conducted in the metropolitan areas of Sylhet where 48 percent of trees were found in between 9-12 m height class (Deb *et al.*, 2013). In the deforested area of Chittagong, the maximum tree and shrub population were found in between 3- 4.9m height class which is comparatively lower height of tree species found in present study area in DSCC (Amin, 2005). In urban parks of Sydney, majority of vegetation (including both trees and shrubs) found between 5-20m in height (City of Sydney, 2013). This is expected with the tree species of urban areas located under power lines, coupled with the City's recent tree planting efforts, as the trees are still maturing.

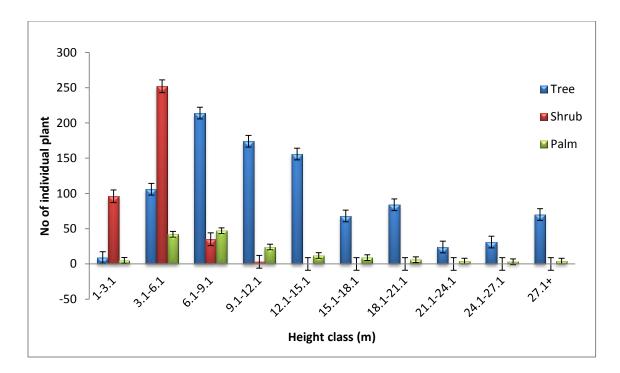


Fig 5: Height class distribution of trees and shrubs in parks of DSCC

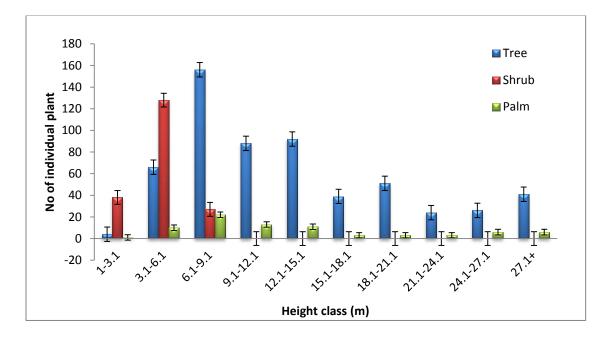


Fig 6: Height class distribution of trees and shrubs in gardens of DSCC

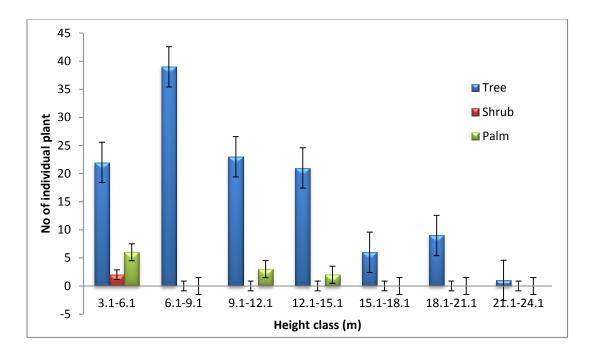


Fig 7: Height class distribution of trees and shrubs in playgrounds of DSCC

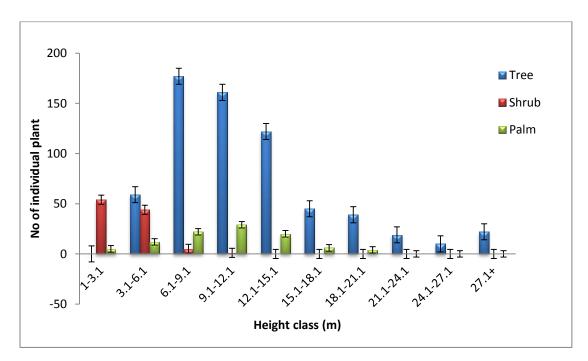


Fig 8: Height class distribution of trees and shrubs in roadsides of DSCC

4.4.2 DBH class distribution

In case of DBH, the classes were defined at regular intervals of 15cm to improve the comparison between areas. It was observed that the DBH differences between the four categories of study areas (parks, gardens, playgrounds and roadsides) were not statistically significant. In this section, the proportional distributions of different DBH classes of plants are presented.

In case of parks, maximum number of tree population (n= 270) were enlisted in between 15-30cm DBH class with standard error value 9.50 and maximum number of shrub and palm population (shrub=501 & palm= 49) were found in between 0-15cm DBH class with standard error value 14.30 for shrubs and 4.63 for palms (Fig 9). In parks, *Ficus virens* represent highest DBH (98.6cm) whereas, lowest DBH (4.5cm) was shown by the *Hibiscus rosa-sinensis*.

In case of gardens, maximum number of plant population (tree= 205; shrub= 209; palm= 25) were enlisted in between 0-15cm DBH class with standard error value 8.36 for trees, 9.23 for shrubs and 3.12 for palms (Fig 10). In gardens, *Ficus bengalensis* represent highest DBH (92.6cm) whereas lowest DBH (2.9cm) was shown by the *Jasminum sambac*.

In case of playgrounds, maximum number of plant population (tree=57; shrub=2; palm=8) were enlisted in between 0-15cm DBH class with standard error value 4.45 for trees, 0.90 for shrubs and 1.83 for palms (Fig 11). In playgrounds, *Samanea saman* represents highest DBH (95cm) whereas; lowest DBH was shown by the *Bauhinia acuminate* (4.2cm).

In roadsides, maximum number of plant population (tree= 283; shrub=110; palm=46) were found in between 0-15cm DBH class with standard error value 9.86 for trees, 6.69 for shrubs and 4.24 for palms (Fig 12). *Albizia richardiana* represent the highest DBH (110.6cm) whereas lowest DBH (3.9cm) was shown by the *Allamanda cathartica* in playgrounds.

From these findings, it is clear that maximum number of plant population belongs to the 0-15 cm DBH class in DSCC. Majority of plant population showed lower DBH and the number of individual plants decreased with the increase of diameter class in these study area. The DBH of plant species of present study area represented lower DBH class compared to the study conducted in the urban areas of Sao Paulo where maximum native trees (>25%) were found in the 22.5-27.5cm DBH class (Richardo, 2002). However, the findings of the study is quite higher in comparison to the urban parks and recreation places of Chicago, USA where maximum number of plant population including trees and shrubs are found in the 1-3 cm DBH class (Nowak et al., 2009). Another study was conducted in vacant and commercial land at the Roanoke city of Virginia where maximum number of trees and shrubs were found in between 7.1-15.2 cm DBH class which is similar to the findings of this study (Kim, 2016). This means trees and shrubs which belong to the urban habitat are poor in diameter because of different environmental factors like pollutant sources, chemicals, and dust into the surrounding air, soil, and water. This biotic factor directly influence vegetation mortality and creates barriers to wildlife movement. Although the space to grow and maintain large trees on urban areas is limited, smaller trees collectively play an important role in improving commercial and industrial urban habitats.

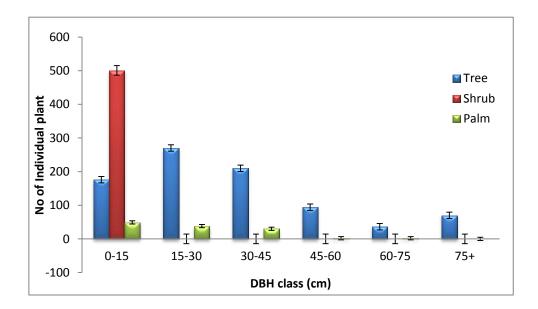


Fig 9: DBH class distribution of trees and shrubs in parks of DSCC

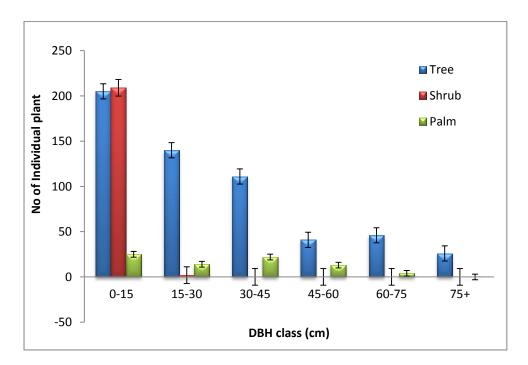


Fig 10: DBH class distribution of trees and shrubs in gardens of DSCC

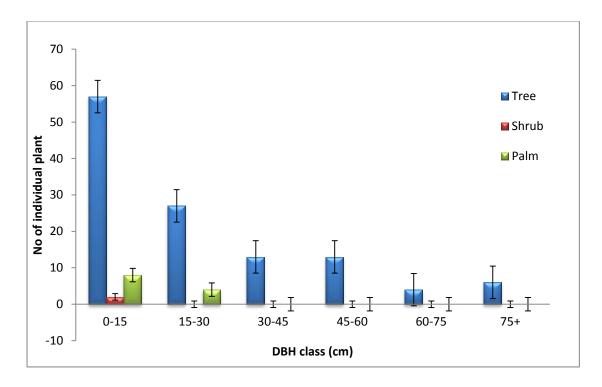


Fig 11: DBH class distribution of trees and shrubs in playgrounds of DSCC

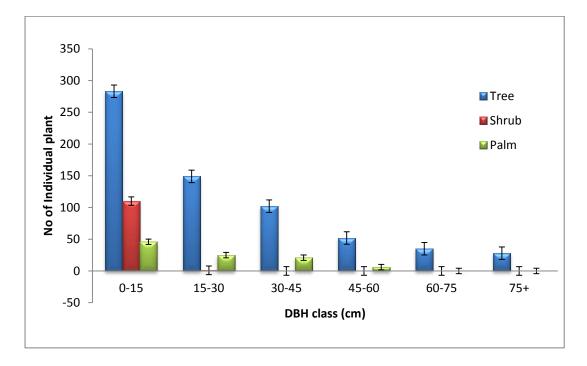


Fig 12: DBH class distribution of trees and shrubs in roadsides of DSCC

4.4.3 Average DBH and Height class of the plants

The comparison among the four study areas according to the average DBH and height of trees and shrubs were represented by figure 12 and 13. From the findings it can be clearly stated that, average height of trees are varied between 10m to 13m with standard error value 1.23 whereas in case of palms, average height was found in between 9-12m with standard error value 1.40 which is quite similar to the average height of trees. Again, in case of shrubs, average height was found in between 3-4m with standard error value 0.64 (Fig 13). The findings from this study indicated that plants in urban area are relatively short and young and in the stage of growth and development.

In case of average DBH, most of the trees are found in between 20-32cm diameter with standard error value 1.72 and palms are generally found within 16-30 cm having standard error value 2.50. However, shrubs are represented by 3-4cm average diameter with standard error value 0.56 in all study areas (Fig 14).

From these findings, it can be clearly stated that, many of the plants were planted very recently in the vegetative area of DSCC and for this reason trees and shrubs are more evenly aged and represent relatively even height and diameter (Fig 13) & (Fig 14). In the Shenyang city of China, most of the trees (about 65%) represent less than 10 m in case of height and 76% of trees represent less than 20 cm in diameter which is similar to the findings of this study (Zhu, 2008). In this research fewer number of individual tree were found with larger DBH values greater than 60 cm (DBH > 60 cm) because of their growth form which can go up to this diameters (Hartshorn, 1980).

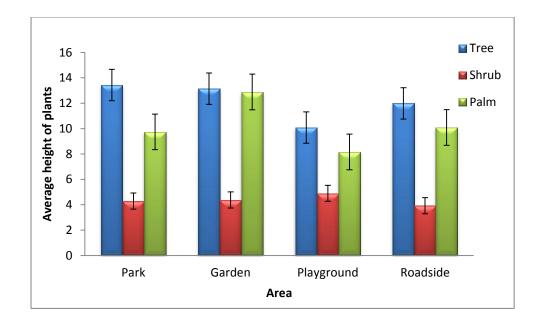


Fig 13: Average height of plant population according to study area

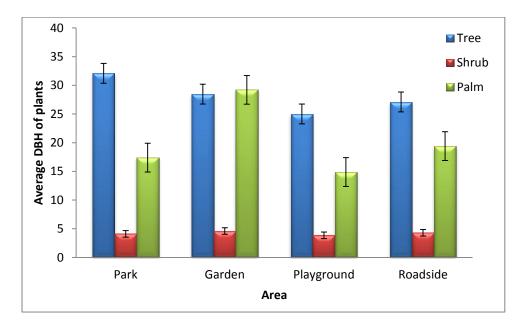


Fig 14: Average DBH of plant population according to study area

4.5 Relationship between area with frequency and density

The relationship of frequency and density with area (parks= 0.6 ha; gardens= 0.37 ha; roadsides= 0.53 ha & playgrounds= 0.05 ha) was shown in Figure 15. In case of frequency, the figure indicates a linear equation as: Y=-27.12x+22.21; (R²=0.819), where R² value was positive and significant. In case of density, the figure indicates a linear equation as: Y=-146.0x+95.15; (R²=0.857), where R² value was positive and significant. This study also indicates that, playground (0.05 ha) shows relatively higher frequency (22.41) and density (92.4) rather than gardens (F=7.7, D=15.56), parks (F=6.33, D=12.91) and roadsides (F=10.38, D=17.41) and the values are gradually decreased in the order of playground >roadsides >gardens >parks.

4.6 Relationship between area with relative frequency and relative density

The relationship of relative frequency and relative density of plants with the area (parks= 0.6 ha; gardens= 0.37 ha; roadsides= 0.53 ha & playgrounds= 0.05 ha) was shown in Figure 16. In case of relative frequency, the figure indicates a linear equation as: Y=-5.044x+3.384 (R²=0.817), where R² value was positive and significant. In case of relative density, the figure indicates a linear equation as: Y=-62.53x+45.52 (R²= 0.815), where R² value was positive and significant. In case of relative density, the figure indicates a linear equation as: Y=-62.53x+45.52 (R²= 0.815), where R² value was positive and significant. This study also indicates that, playground (0.05 ha) shows relatively higher frequency (3.45) and density (46.21) rather than gardens (F=0.65, D=11.67), parks (F=0.55, D=9.68) and roadsides (F=1.07, D=17.59) and the values are gradually decreased in the order of playgrounds>roadsides > gardens > parks.

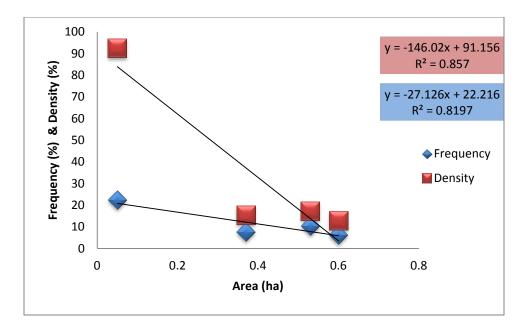


Fig 15: Relationship between area with frequency and density

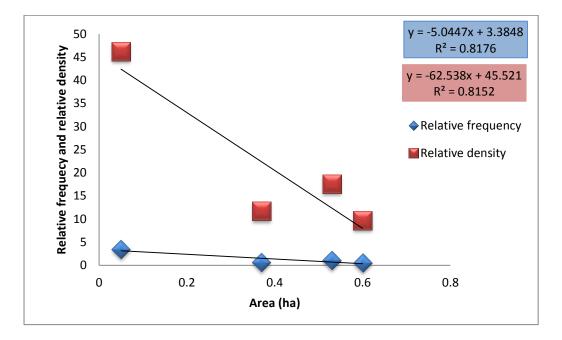


Fig 16: Relationship between area with relative frequency and relative density

4.7 Relationship between area and mean basal area (m²/ha)

The relationship of mean basal area of plants with the area (parks= 0.6 ha; gardens= 0.37 ha; roadsides= 0.53 ha & playgrounds= 0.05 ha) was shown in Figure 17. In case of mean basal area (m²/ha), the figure indicates a linear equation as: Y=-12.69x+8.003 (R²=0.835), where R² value was positive and significant. This study also indicates that, playground (0.05 ha) shows relatively higher mean basal area (8.18 m²/ha) rather than gardens (1.30m²/ha), parks (1.36m²/ha) and roadsides (1.5m²/ha) and the values are gradually decreased in the order of playgrounds>roadsides > parks > gardens.

4.8 Relationship between area and mean DBH (cm)

The relationship of mean DBH (cm) of plants with the area (parks= 0.6 ha; gardens= 0.37 ha; roadsides= 0.53 ha & playgrounds= 0.05 ha) was shown in Figure 18. In case of mean DBH (cm), the figure indicates a linear equation as: Y=-9.015x+16.75 (R²=0.744), where R² value was positive and significant. This study also indicates that, parks showed relatively higher mean DBH (23.18 cm) rather than gardens (20.99 cm), roadsides(19.76 cm) and playgrounds (17.05 cm) and the values are gradually decreased in the order of parks>gardens > roadsides > playgrounds.

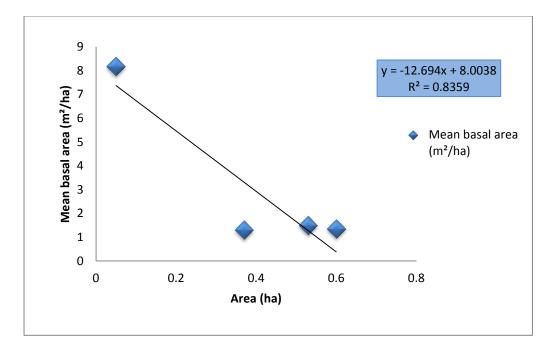


Fig 17: Relationship between area and mean basal area (m²/ha)

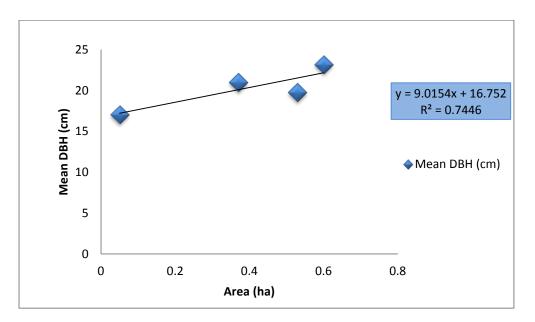


Fig 18: Relationship between area and mean DBH (cm)

4.9 Important value index of the plant species in DSCC

The importance value index (IVI) is an aggregate index that summarizes the density, abundance, and distribution of plant species (Okiror *et al.*, 2012). IVI reflects the degree of dominance and abundance of a given species in relation to other species in an area (Giliba *et al.*, 2011; Kent and Coker, 1992). Similarly, ecological significance of species can be identified in the study area through important value index (Muthuramkumar & Parthasarathy, 2000).

From the findings of this study it is clear that *Polyalthia longifolia* showed the highest IVI (103.39%) followed by *Swietenia macrophylla* (85.61%) and *Samanea saman* (83.44%) among all the species in 4 study area from 192 plots (Table 8, 9, 10 & 11). Similar study was conducted in the urban parks of Bangalore, India where IVI value for *Polyalthia longfolia* was quite lower (34.9%) (Nagendra & Gopal, 2010). The findings of this study also higher than IVI value (28.37%) for *Swietenia macrophylla* found in the metropolitan area of Chittagong (Uddin *et al.*, 2015) but quite similar with the IVI (77.1%) for *Swietenia macrophylla* in the urban forest of Shrilanka (Lilia *et al.*, 2012).

From four different types of study area, highest relative basal area (48%) and highest relative frequency (12.31%) was shown by *Samanea saman* whereas, highest relative density (300%) was shown by *Polyalthia longfolia*. In this section only those species were discussed which have \geq 15% IVI value in all study area. The IVI value of all the plant species are represented in Appendix 3, 4, 5 & 6.

The Importance value Index (IVI) of any species depicts the dominance of it in a diverse population. So this study reveals that *Polyalthia longifolia, Swietenia macrophylla* and *Samanea saman* are the most dominant tree species in 4 categories of study site in DSCC. The high Importance Value Index (IVI) of these species in green areas of DSCC indicates their dominance and good power of regeneration, their growth habits and potential to tolerate diverse environmental condition of urban settlement.

4.9.1 Important value index of the plant species in Parks

The relative density (RD %), relative frequency (RF %), relative basal area (RBA %) and Importance Value Index (IVI) of plant species were recorded from the parks of DSCC. In parks, *Swietenia macrophylla* showed the maximum IVI (38%), followed by *Combretum indicum* (25.29%), *Polyalthia longifolia* (24.41%), *Artocarpus heterophyllus* (24.25%), *Delonix regia* (20.31%) and *Samanea saman* (18.53%), respectively.

Maximum basal area was shown by *Samanea saman* (13.18%); maximum relative density was shown by *Swietenia macrophylla* (103.75%) and maximum frequency was found in *Artocarpus heterophyllus* (3.72%), respectively (Table 8).

4.9.2 Important value index of the plant species in Gardens

The relative density (RD %), relative frequency (RF %), relative basal area (RBA %) and Importance Value Index (IVI) of plant species were recorded from the garden area of DSCC. In gardens, *Lagerstroemia speciosa* showed the maximum IVI (22.64%) followed by *Cocos nucifera* (21.34%), *Eucalyptus camaldulensis* (20.79%), *Mangifera indica* (20.19%), *Dalbergia sissoo* (19.97%), *Combretum indicum* (18.56%), *Mesua ferrea* (17.56%), respectively.

Maximum basal area was shown by *Eucalyptus camaldulensis* (9.29%); maximum relative density was shown by *Lagerstroemia speciosa* (63.27%) and maximum relative density was found in *Mangifera indica* (3.08%), respectively (Table 9).

SL No.	Species Name	Relative frequency	Relative density	Relative basal area (%)	IVI
		(%)	(%)		
1.	Swietenia macrophylla	3.28	103.75	6.96	38.00
2.	Combretum indicum	3.28	72.50	0.08	25.29
3.	Polyalthia longifolia	2.30	66.25	4.68	24.41
4.	Artocarpus heterophyllus	3.72	67.50	1.54	24.25
5.	Delonix regia	2.52	52.50	5.90	20.31
6.	Samanea saman	2.41	40.00	13.18	18.53
7.	Cocos nucifera	2.19	42.50	3.01	15.90
8.	Mangifera indica	2.63	41.25	2.31	15.40
9.	Dypsis lutescens	1.64	43.75	0.10	15.16

Table 8: Relative frequency, relative density, relative basal area & IVI of parks in DSCC (IVI value $\geq 15\%$)

Table 9: Relative frequency, relative density, relative basal area & IVI of gardens in DSCC (IVI value $\geq 15\%$)

SL	Species Name	Relative	Relative	Relative	IVI
No.		frequency	density (%)	basal	
		(%)		area (%)	
1.	Lagerstroemia speciosa	2.06	63.27	2.61	22.64
2.	Cocos nucifera	2.74	61.22	0.07	21.34
3.	Eucalyptus camaldulensis	2.06	51.02	9.29	20.79
4.	Mangifera indica	3.08	55.10	2.38	20.19
5.	Dalbergia sissoo	2.57	53.06	4.27	19.97
6.	Combretum indicum	2.57	53.06	0.06	18.56
7.	Mesua ferrea	2.23	48.98	1.49	17.56
8.	Swietenia macrophylla	1.71	44.90	3.30	16.64

4.9.3 Important value index of the plant species in Playgrounds

The relative density (RD %), relative frequency (RF %), relative basal area (RBA %) and Importance Value Index (IVI) of plant species were recorded from the playgrounds of DSCC. In playgrounds maximum IVI was shown by *Polyalthia longifolia* (103.39%) followed by *Swietenia macrophylla* (85.61%), *Samanea saman* (83.44%), *Dalbergia sissoo* (23.77%), *Cocos nucifera* (22.96%) and *Ficus bengalensis* (20.49%), respectively.

Maximum basal area was shown by *Samanea saman* (48%); maximum relative density was shown by *Samanea saman* (12.31%) and maximum relative frequency was found in *Polyalthia longifolia* (300%) respectively (Table 10).

4.9.4 Important value index of the plant species in roadsides

The relative density (RD %), relative frequency (RF %), relative basal area (RBA %) and Importance Value Index (IVI) of plant species were recorded from the roadsides of DSCC. In streets, maximum IVI was shown by *Swietenia macrophylla* (52.97%) followed by *Polyalthia longifolia* (34.54%), *Mimusops elengi* (30.97%), *Samanea saman* (25.93%), *Tectona grandis* (20.81%) and *Delonix regia* (20.07%), respectively.

Maximum basal area was shown by *Samanea saman (15.03%)*; maximum relative density was shown by *Swietenia macrophylla* (145.28%); maximum relative frequency was found in *Swietenia macrophylla* (5.62%), respectively (Table 11).

Table 10: Relative frequency, relative density, relative basal area & IVI of roadsides in DSCC (IVI value $\geq 15\%$)

SL	Species Name	Relative	Relative	Relative	IVI
No.		frequency	density (%)	basal area	
		(%)		(%)	
1.	Swietenia macrophylla	5.62	145.28	7.99	52.97
2.	Polyalthia longifolia	4.07	96.23	3.32	34.54
3.	Mimusops elengi	3.68	88.68	0.54	30.97
4.	Samanea saman	4.26	58.49	15.03	25.93
5.	Tectona grandis	3.88	54.72	3.84	20.81
6.	Delonix regia	3.49	50.94	5.77	20.07
7.	Cocos nucifera	2.91	54.72	1.47	19.70
8.	Albizia richardiana	3.10	43.40	8.52	18.34
9.	Mangifera indica	3.10	43.40	3.25	16.58
10.	Artocarpus heterophyllus	2.71	43.40	0.98	15.70

Table 11: Relative frequency, relative density, relative basal area and IVI of playgrounds in DSCC (IVI value ≥ 15%)

SL No.	Species Name	Relative frequenc	Relative density (%)	Relative basal area	IVI
		y (%)		(%)	
1.	Polyalthia longifolia	7.69	300	2.47	103.39
2.	Swietenia macrophylla	10.77	230	16.05	85.61
3.	Samanea saman	12.31	190	48.00	83.44
4.	Dalbergia sissoo	6.15	60	5.14	23.77
5.	Cocos nucifera	7.69	60	1.19	22.96
6.	Ficus bengalensis	6.15	50	5.32	20.49
7.	Anthocephalus sinensis	4.62	50	6.68	20.43
8.	Terminalia catappa	3.08	50	2.14	18.41
9.	Delonix regia	4.62	40	1.31	15.31

4.10 Present status of herbaceous plant coverage in DSCC

4.10.1 Number of herb species according to family and genera

Number of herb species according to family and genera are presented in the Table 12. The findings from the table indicated that, maximum number of herb species belongs to the Poaeceae family (Sp=17& Gn=14) followed by Asteraceae (Sp=13& Gn=12), Lamiaceae (Sp=6& Gn=5), Amaranthaceae (Sp=6& Gn=4), Araceae (Sp=5& Gn=5), and Gramineae (Sp=5& Gn=5) (Table 12). This finding is coincident with the report of (Flávia, 2004) where 16% of herb communities were covered by Poaeceae family in the terra-firme Central Amazonian forest.

From these findings it can be stated that, the understorey vegetation of DSCC had shown significant number of herb species whereas maximum herbs were belongs to the Poacecae and Asteraceae family which means the understory vegetation of the urban area in DSCC are mostly dominant by weeds, grass, and small flowering herbs.

4.10. 2 Percent of available herb species

The herb community in this study includes only the real herbs, plants without woody tissue, and therefore seedlings of trees and shrubs are not considered. In all the study area, total 126 herb species under 50 families and 114 genera were found which is very lower than the number of herb species (n=155) found in the western ghat of India (Annaselvam, 1999) but comparatively higher than Singapore city where only 59 herb species were found (Turner *et al.*, 1996). Among the study areas, parks of DSCC represents the maximum percentage of herb species (total =74.6%) whereas playground shows minimum number of herb percentage (total= 4.76%) (Fig 19).The list of the herb species with their scientific name and family are represented in Appendix 7.

4.10.3 Percent of herbaceous plant species according to growth forms

In this section the percentage herbs according to their different growth form were mentioned (Fig 20). From the graph, it can be clearly stated that, maximum number of herbaceous plant species are weeds (29.37%), followed by flowering herbs (21.43%), grass (16.67%), ornamental (10.32%) and climber (7.14%). Only one fruit (*Musa acuminata colla*) and 3 bamboo species (*Bambusa balcooa, Bambusa tullda&Bambusa arundinacea*) were found in the study area.

SL NO	Family	No. of Species	No. of Genera
1.	Poaceae	17	14
2.	Asteraceae	13	12
3.	Lamiaceae	6	5
4.	Amaranthaceae	6	4
5.	Araceae	5	5
6.	Gramineae	5	5
7.	Euphorbiaceae	4	4
8.	Fabaceae	4	4
9.	Solanaceae	4	4
10.	Cyperaceae	4	1
11.	Commelinaceae	3	3
12.	Asparagaceae	3	3
13.	Acanthaceae	3	3
14.	Liliaceae	3	2
15.	Convolvulaceae	3	2
16.	Zingiberaceae	2	2
17.	Musaceae	2	2
18.	Apocynaceae	2	2
19.	Verbenaceae	2	2
20.	Malvaceae	2	2
21.	Lythraceae	2	2
22.	Compositae	2	2
23.	Cucurbitaceae	2	2
24.	Balsaminaceae	1	1
25.	Nyctaginaceae	1	1
26.	Cannaceae	1	1
27.	Boraginaceae	1	1
28.	Malpighiaceae	1	1
29.	Passifloraceae	1	1
30.	Bignoniaceae	1	1
31.	Labiotae	1	1
32.	Apiaceae	1	1
33.	Rubiaceae	1	1
34.	Polygonaceae	1	1
35.	Oxalidaceae	1	1
36.	Papaveraceae	1	1
37.	Primulaceae	1	1
38.	Scrophulariaceae	1	1
39.	Dioscoreaceae	1	1
40.	Agavaceae	1	1
41.	Capparidaceae	1	1
42.	Caesalpiniaceae	1	1
43.	Brassicaceae	1	1
44.	Piperaceae	1	1
45.	Linderniaceae	1	1
46.	Dryopteridaceae	1	1

Table 12: List of herb species according to family and genra

47.	Caryophyllaceae	1	1
48.	Portulacaceae	1	1
49.	Begoniaceae	1	1
50.	Marantaceae	1	1
		Total= 126	Total=114

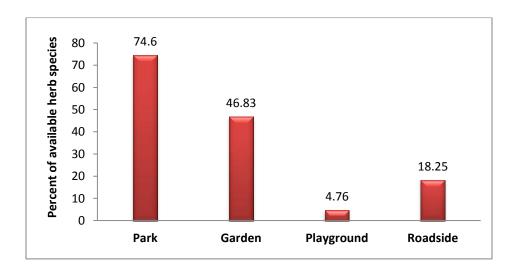


Fig 19: Percent of herb species according to study area

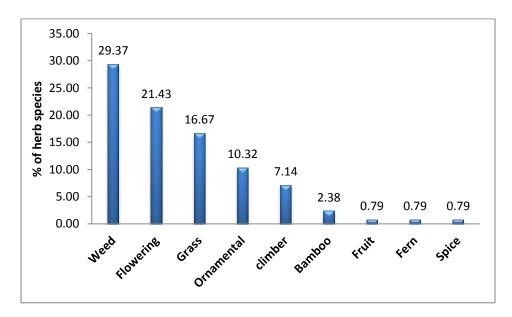


Fig 20: Percentage of herbs according to their growth form in DSCC

4.11 Dominancy of plant species and their primary uses

Selected study area of DSCC composed with different types of plant species with multipurpose use. Plant species with number of individual, percent of occurrence and their primary uses are collectively expressed in Table 13. Plant species in the urban areas are used for mainly aesthetic, ornamental and for fuel supply. Maximum plant species are mainly used for their flowering and ornamental purpose (Table 13). Among 221 tree and shrub species major six species found in dominancy than others and the highest percent of occurrence was found by *Swietenia macrophylla* (n=205, occurrence=6.05%) followed by *Polyalthia longifolia* (n=150, occurrence=4.42%) ,*Combretum indicum* (n=105, occurrence=3.10%) , *Samanea saman* (n=98, occurrence=2.89%) , *Mimusops elengi* (n=95, occurrence=2.80%) and *Delonix regia* (n=89, occurrence=2.62%) respectively (Table 12).

Common Name	Scientific name	Family	Uses	No of Individuals	% of total
Agor	Aquilaria agallocha	Thymelaeceae	St, Md	9	0.27
Akashmoni	Acacia auriculiformis	Fabaceae	Ti	40	1.18
Akashneem	Millingtonia hortensis	Bignoniaceae	Ti, Om	1	0.03
Akondo	Pimenta dioica	Myrtaceae	Fr,Om	4	0.12
Allamonda	Allamanda cathartica	Apocynaceae	Fl	11	0.32
Amloki	Emblica officinalis	Phyllanthaceae	Fr	16	0.47
Amra	Terminalia chebula	Combrectaceae	Fr	11	0.32
Anjan	Hardwickia binata	Caesalpiniaceae	Ti, Om	1	0.03
Ankura	Anogeissus acuminata	Combrectaceae	Ti	1	0.03
Aralia	Polyscias fruticosa	Araliaceae	Om	14	0.41
Areca palm	Dypsis lutescens	Arecaceae	Om	54	1.59
Arjun	Terminalia arjuna	Combrectaceae	Ti, Md	44	1.30
Arucaria	Araucaria araucana	Arucariaceae	Ti	2	0.06
Arrow poison	Antiaris toxicaria	Moraceae	Md, St	1	0.03
Ashok	Saraca asoca	Fabaceae	Ti	6	0.18
Ashwatth	Ficus religiosa	Moraceae	Ti	3	0.09
Ata	Annona squamosa	Annonaceae	Fr	16	0.47
Babla	Acacia nilotica	Fabaceae	Ti	16	0.47
Baganbilash	Bougainvillea glabra	Nyctaginaceae	Fl, Om	22	0.65
Bailam	Anisoptera scaphula	Dipterocarpaceae	Ti,	3	0.09
Baobab	Adansonia digitata	Malvaceae	Ti,	2	0.06
Begun	Solanum melongena	solaneceae	Fr	1	0.03
Bel	Aegle marmelos	Rutaceae	Fr	9	0.27
Behula bot	Ficus lyrtica	Moraceae	Ti	1	0.03
Beli	Jasminum sambac	Oleaceae	Fl	20	0.59
Bichitro bokul	Mimusop elengi L. veriegata	Sapotaceae	Om	2	0.06
Bherenda	Ricinus communis	Euphorbiaceae	Md	3	0.09
Bilati gab	Diospyros blancoi	Ebenaceae	Fr, Ti	11	0.32
Bilati jarul	Lagerstroemia thorelii	Lythraceae	Fl, Ti	9	0.27
Bilimbi	Averrhoa bilimbi	Oxalidaceae	Fr	8	0.24
Bird of paradise	Heliconia rostrata	Heliconiaceae	Fl, Om	10	0.29
Bohera	Terminalia bellerica	Combretaceae	Md	6	0.18
Bokul	Mimusops elengi	Sapotaceae	Fl, Ti	95	2.80
Bon ashar	zanthoxyllum rhesta	Rutaceae	Ti	1	0.03
Bon parul	Stereospermum kunthianum	Bignoniaceae	Fl, Ti	2	0.06
Bonshupari	Caryota urens	Arecaceae	Ti	1	0.03
Boroi	Ziziphus jujuba	Rhamnaceae	Fr	23	0.68
Bot	Ficus bengalensis	Moraceae	Md	43	1.27
Botolbrush	Callistemon citrinus	Myrtaceae	Fl, Ti	14	0.41
Bottle palm	Hyophorbe lagenicaulis	Arecaceae	Om	3	0.09

Table 13. Tree and shrub species identified in DSCC with their primary uses, number of individual and percent of total

Buddho	Pterygota alata	Malvaceae	Md, Ti	1	0.02
narikel				1	0.03
Calliandra	Calliandra haematocephala	Fabaceae	Fl, Om	7	0.21
Camelia	Camellia sasangua	Theaceae	Fl	3	0.09
Chaina	Citrus aurantium	Rutaceae	Fr	1	0.02
komola				1	0.03
Chalta	Dillenia indica	Dilleniaceae	Fr	31	0.91
Chapalish	Artocarpus chaplasha	Moraceae	Fr, Ti	4	0.12
Chapa	Magnolia champaca	Magnoliaceae	Fl, Ti	2	0.06
Chatim	Alstonia scholaris	Apocynaceae	Md, Ti	30	0.88
Cherry	Lagerstroemia lancasteri	Lythraceae	F1	36	1.06
Chikrashi	Chukrasia tabularis	Meliaceae	Om	9	0.27
Chinese bot	Ficus microcarpa	Moraceae	Md	1	0.03
Chitki	Phyllanthus reticulatus	Euphorbiaceae	Fr, Md, Ti	3	0.09
Chrismass tree	Araucaria columnaris	Arucariaceae	Om	17	0.50
Coconut	Cocos nucifera	Arecaceae	Fr, Md	99	2.92
Coffee	Coffea arabica	Rubiaceae	St, Md	2	0.06
Cordia	Cordia myxa	Boraginaceae	Fl	4	0.12
Croton	Codiaeum variegatum	Euphorbiaceae	Om	38	1.12
Cycus palm	Cycas revoluta	Cycadaceae	Om	7	0.21
Dadmordon	Senna alata	Fabaceae	Md	3	0.09
Dalim	Punica granatum	Lythraceae	Fr, Md	4	0.12
Debdaru	Polyalthia longifolia	Annonaceae	Ti	150	4.42
Debkanchon	Phanera purpurea	Fabaceae	Fl	1	0.03
Deshineeem	Azadirachta indica	Meliaceae	Fr, Md, Ti	37	1.09
Deua	Artocarpus lakoocha	Moraceae	Fr, Ti	10	0.29
Diabetic	Gynura procumbens	Asteraceae	Md	3	0.09
Doigota	Bixa orellana	Bixaceae	Md	1	0.03
Dracaena	Dracaena aletriformis	Asparagaceae	Om	17	0.50
Dragon fruit	Hylocereus undatus	Cactaceae	Fr	1	0.03
Dulichapa	Magnolia pterocarpa	Magnoliaceae	Fl	1	0.03
Dumbcane	Dieffenbachia seguine	Araceae	Om, Md	2	0.06
Dumur	Ficus carica	Moraceae	Fr, Ti, Md	9	0.27
Duranta	Duranta erecta	Verbenaceae	Om	31	0.91
Eucalyptus	Eucalyptus camaldulensis	Myrtaceae	Md, Ti	44	1.30
Falsha	Grewia asiatica	Malvaceae	Fr, Md	3	0.09
Faissa udal	Sterculia villosa	Sterculiaceae	Ti	1	0.03
Fanpalm	Livistona chinensis	Arecaceae	Om	29	0.86
Fishtail palm	Caryota urens	Arecaceae	Om	4	0.12
Forkoria	Cordia sebestena	Boraginaceae	Om	1	0.03
Gab	Diospyros peregrina	Ebenaceae	Fr, Ti	4	0.12
Ghoraneem	Melia azedarach	Meliaceae	Md	23	0.68
Giant yucca	Yucca gigantea	Asparagaceae	Om	2	0.06
Golap	Rosa rubiginosa	Rosaceae	Fl	18	0.53

Golapjam	Syzygium Jambos	Myrtaceae	Fr, Ti	16	0.47
Gondhoraj	Gardenia jasminoides	Rubiaceae	Fl, Md	21	0.62
Guava	Psidium guajava	Myrtaceae	Fr, Md	24	0.71
Gustavia	Gustavia augusta.	Lecythidaceae	Fl, Ti, Md	7	0.21
Hamelia	Hamelia patens	Rubiaceae	Fl	10	0.29
Hasnahena	Cestrum nocturnum	Solanaceae	Fl	14	0.41
Hijol	Barringtonia acutangula	Lecythidaceae	Ti , Om	20	0.59
Hortoki	Terminalia chebula	Combrectaceae	Fr	25	0.74
Ipil-ipil	Leucaena leucocephala	Fabaceae	Ti	15	0.44
Jam	Syzygium cumini	Myrtaceae	Fr, Ti	35	1.03
Jambura	Citrus grandis	Rutaceae	Fr	12	0.35
Jamrul	Syzygium samarangense	Myrtaceae	Fr	11	0.32
Jarul	Lagerstroemia speciosa	Lythraceae	Ti, Md	56	1.65
Jesmin	Jasminum officinale	Oleaceae	Fl, Md	2	0.06
Jhau	Casuarinas equisetifolia	Casuarinaceae	Om, Ti	16	0.47
Jiga gach	Millingtonia hortensis	Bignoniaceae	Ti	2	0.06
Joba	Hibiscus rosa-sinensis	Malvaceae	Fl, Md	22	0.65
Jog dumur	Ficus racemosa	Moraceae	Ti, Md	1	0.03
Jolpai	Elaeocarpus serratus	Elaeocarpaceae	Fr	8	0.24
Jonglibadam	Sterculia foetida	Malvaceae	Ti	4	0.12
kajubadam	Anacardium occidentale	Anacardiaceae	Fr, Ti, Md	5	0.15
Kalokoroi	Albizia lebbek	Fabaceae	Ti	17	0.50
Kamini	Murraya paniculata	Rutaceae	F1	10	0.29
Kamranga	Averrhoa carambola	Oxalidaceae	Fr	15	0.44
Kananga	Cananga odorata	Annonaceae	Fl, Md	2	0.06
Karipata	Murraya koenigii	Rutaceae	Md	3	0.09
Kathal	Artocarpus heterophyllus	Moraceae	Fr, Md, Ti	95	2.80
Kathalichapa	Artabotrys hexapetalus	Annonaceae	Fl, Md	8	0.24
Kathbadam	Terminalia catappa	Combrectaceae	Fr, Ti	32	0.94
Kathgolap	Plumeria obtusa	Apocynaceae	Fl, Ti, Md	23	0.68
Kaufol	Garcinia cowa	Clusiaceae	Fr	1	0.03
Khapafol	Nephelium longana	Sapindaceae	Fr	1	0.03
Kentia palm	Howea forsteriana	Arecaceae	Om	14	0.41
Keya	Pandanus fascicularis Lam	Pandanaceae	Om, Md	4	0.12
Khejur	Phoenix sylvestris	Arecaceae	Fr, Om	17	0.50
Khoir	Acacia catechu	Fabaceae	St,Fr	1	0.03
Kodom	Anthocephalus sinensis	Rubiaceae	Fl, Ti, Md	42	1.24
konokchapa	Ochna squarrosa	Ochnaceae	Fl	6	0.18
Korobi	Nerium indicum	Apocynaceae	Fl	6	0.18
Koromcha	Carissa carandas	Apocynaceae	Fr, Md	6	0.18
Korpur	Cinnamomum camphora	Lauraceae	Md	2	0.06
Krishnochura	Delonix regia	Fabaceae	Fl, Ti, Md	89	2.62

Kurchi	Holarrhena pubescens	Apocynaceae	Md, Ti	2	0.06
Kusum	Carthamus tinctorius	Asteraceae	Ti, Fl	1	0.03
Ladies	Holmskioldia sanguinea	Lamiaceae	Om		
umbrella			0	3	0.09
Lal bichuti	Tragia involucrata	Euphorbiaceae	Md	1	0.03
Lal gulachin	Plumeria rubra	Apocynaceae	Fl, Md	2	0.06
Lal sonail	Cassia javanica	Fabaceae	Fl	4	0.12
Lanka joba	Malvaviscus arboreus	Malvaceae	Fl	6	0.18
Lebu	Citrus limonum	Rutaceae	Fr, Md	6	0.18
Life tree	Guaiacum officinale	Zygophyllaceae	Ti	2	0.06
Litchi	Litchi chinensis	Sapindaceae	Fr, Md, Ti	7	0.21
Lombu	Khaya anthotheca	Meliaceae	Ti	2	0.06
Lotki	Melastoma	Melastomataceae	Fl, Md	2	0.00
	malabathricum			2	0.06
Lohakath	Xylia dolabriformis	Fabaceae	Ti	6	0.18
Lotkon	Baccaurea motleyana	phyllanthaceae	Fr, Ti	2	0.06
Macurthur	Ptychosperma	Arecaceae	Om	1	0.03
palm	macarthurii				0.03
Machiful	Malpighia coccigera	Malpighiaceae	Fl, Om	3	0.09
Mahgoni	Swietenia macrophylla	Meliaceae	Ti, Md	205	6.05
Malta	Citrus sinensis	Rutaceae	Fr	1	0.03
Malpigia	Malpighia emarginata	Malpighiaceae	Fl ,Md	4	0.12
Mander	Erythrina orientalis	Fabaceae	Ti, Md	11	0.32
Mango	Mangifera indica	Anacardiaceae	Fr, Md,Ti	85	2.51
Mehedi	Lawsonia Inermis	Lythraceae	Md	12	0.35
Meleshia	Millettia peguensis	Fabaceae	Fl	4	0.12
May flower	Epigaea repens	Ericaceae	Fl, Om	2	0.06
Minjiri	Cassia siamea	Fabaceae	Ti	25	0.74
Morich	Capsicum annuum	solaneceae	Fr,Md	6	0.18
Modhumaloti	Quisqualis indica.	Combretaceae	Fl	5	0.15
Mohua	Madhuca longifolia	Sapotaceae	Fr, Md	5	0.15
Munesteria	Mussaenda erythrophylla	Rubiaceae	Fl	1	0.03
Muchkundo chapa	Petrospermum acerifolium	Sterculiaceae	Fl	1	0.03
Musanda	Mussaenda erythrophylla	Rubiaceae	Fl	33	0.97
Nageshwar	Mesua ferrea	Calophyllaceae	Md, Ti	37	1.09
Naglingom	Couroupita guianensis	Lecythidaceae	Fl,Om	18	0.53
Nandina	Nandina domestica	Berberidaceae	Om, Md	4	0.12
Neelini	Indigofera tinctoria	Fabaceae	Md	3	0.09
Neel parul	Mansoa alliacea	Bignoniaceae	Fl	8	0.24
Neel	Delonix aprevalia	Fabaceae	Ti	1	0.03
krishnochura					0.05
Nishinda	Vitex negundo	Lamiaceae	Md	2	0.06
Nilkontho	Jacaranda mimosifolia	Bignoniaceae	Om	1	0.03
Oil palm	Elaeis guineensis	Arecaceae	Om,Md	9	0.27
Orboroi	Phyllunthus acidus	Euphorbiaceae	Fr, Md	3	0.09
Pakhiful	Brownea coccinea	Fabaceae	Om	2	0.06
Pakur	Ficus virens	Moraceae	Md	30	0.88

Palam	Wrightia coccinea	Apocynaceae	Ti	1	0.03
Palash	Butea monosperma	Fabaceae	Fl, Ti	3	0.09
Papaya	Carica papaya	caricaceae	Fr	14	0.05
Parijat	Canna indica	Cannaceae	Fl, Ti	1	0.03
Porosh pipul	Thespesia populnea	Malvaceae	Ti	1	0.03
Ponytail palm	Beaucarnea recurvata	Asparagaceae	Om	1	0.03
Putronjib	Drypetes roxburghii	Euphorbiaceae	Ti, Md	8	0.03
Queen palm	Syagrus romanzoffiana	Arecaceae	Om, Md	36	1.06
Radhachura	Caesalpinia pulcherrima	Fabaceae	Fl,Md	34	1.00
Raintree	Samanea saman	Fabaceae	Ti	98	2.89
Rambotam	Nephelium lappaceum	Sapindaceae	Ti	1	0.03
Rajghonta	Brugmansia suaveolens	Solanaceae	Ti	1	0.03
Raj ashok	Amherstia nobilis	Fabaceae	Ti	1	0.03
Rajkoroi	Albizia richardiana	Fabaceae	Ti	57	1.68
Red sister	Cordyline fruticosa	Liliaceae	Om, Md	20	0.59
Rongon	Combretum indicum	Combrectaceae	Fl, Md	105	3.10
Rokto	Bauhinia variegata	Casesalpinaceae	Fl, Md	105	5.10
kanchon	Bauninia variegaia	Casesaipillaceae	1 ⁻ 1, 1v10	3	0.09
Roktochondo			Fl, Md		
	Adenanthera pavonina	Fabaceae	1 ⁻ 1, 1v1u	6	0.18
n Rokto joba	Hibiscus rosa-sinensis	Malvaceae	Fl, Md	14	0.41
Ronodeleshia	Rondeletia odorata	Rubiaceae	Fl	14	0.41
Royal palm	Roystonea regia	Arecaceae	Om, Md	42	1.24
Rubber bot	Hevea brasiliensis	Euphorbiaceae	Md, Om	35	1.24
Rudro palash	Spathodea campanulata	Bignoniaceae	Fl, Ti	<u> </u>	0.03
Sajina	Moringa oleifera	Moringaceae	Md	19	0.03
Sadakoroi	0 0	Fabaceae	Ti	3	0.09
Scarf lara	Albizia procera		Ti	<u> </u>	
	Cuphea micropetala	Lythraceae Lamiaceae	Ti	54	0.03
Segun	Tectona grandis		Ti	<u> </u>	0.24
Shaora Shara d	Streblus asper	Moraceae		8	0.24
Sharod mollika	I a gan in an an an at if a line	Oleaceae	Fl, Md	2	0.06
Shefali	Jasminum angustifolium Nyctanthes arbor-tristis	oleaceae	Fl, Md	14	0.41
	Bauhinia acuminata				
Shet kanchon		Casesalpinaceae	Fl, Om Ti	<u>15</u> 2	0.44
Shet shimul	Ceiba pentandra	Malvaceae	Ti		
Shimul	Bombax ceiba	Malvaceae		13	0.38
Shissoo	Dalbergia sissoo	Fabaceae	Ti	41	1.21
Shobeda	Manilkara zapota	Sapotaceae	Fr,Md	<u>5</u> 5	0.15
Shornochapa	Michelia champaca	Magnoliaceae	Fl, Ti	5	0.15
Shupari	Areca catchu	Arecaceae	St, Md, Fr	10	0.29
Sonalu	Cassia fistula	Fabaceae	Fl, Md	19	0.56
Spanish dagger	Yucca gloriosa	Asparagaceae	Om	3	0.09
Tabebuia	Tabebuia cassinoides	Bignoniaceae	Fl, Om	1	0.03
Tal palm	Borassus flabellifer	Arecaceae	Fr,Md	24	0.71
Tecoma	Tecoma stans	Bignoniaceae	Fl	2	0.06
Tetul	Tamarindus indica	Fabaceae	Fr, Md,Ti	24	0.71
Thuja	Thuja occidentalis	cupressaceae	Om	32	0.94

Tilokfota	Lagerstroemia parviflora	Lythraceae	Ti	1	0.03
Tomal	Diospyros cordifolia	Ebenaceae	Ti,Md	2	0.06
Tut	Morus alba	Moraceae	Md	5	0.15
Togor	Tabernaemonlana divaricata	Apocynaceae	Fl	54	1.59
Ulot kombol	Abroma augusta	Malvaceae	Md	3	0.09
Udoy podmo	Magnolia grandiflora	Magnoliaceae	Fl	8	0.24
Vadra	Gmelina hystrix	Verbenaceae	Md	1	0.03
Verenta	Jatropha multifida	Euphorbiaceae	Fl	3	0.09
Vuichapa	Kaempferia rotunda	Zingiberaceae	Fl	2	0.06
Yesterday ,today ,tomorrow	Brunfelsia pauciflora	solanaceae	Fl, Om	10	0.29

CHAPTER V

SUMMARY AND CONCLUSION

The analysis of the structure and composition provides the basis for long-term planning of the urban green infrastructure which will enhance ecosystem function, therefore providing longer term benefits for the human population (Benedictand & Mcmahon, 2002).

It was found that, all the study area of DSCC contained a total of 347 plant species (144 trees, 77 shrubs and 126 herbs) which is relatively significant in terms of species diversity. Among all the study area, parks had shown maximum number of plant species (n=285). *Swietenia macrophylla* were represented as the most dominant tree species (n=205, occurance= 6.05%) and *Combretum indicum* (n=105, occurance= 3.10%) as the most dominant shrub in DSCC because of their hardness and survival capacity in harsh condition of urban areas. Majority of tree and shrub population were represented by parks (44%) followed by gardens (26%), roadsides (36%) and playgrounds (4%). In case of understorey vegetation, parks had shown the highest percentage of herb coverage (74.6%) followed by gardens (46.83%) and majority of herb population are weeds (29.37%) which indicates the poor maintenance of urban vegetative areas as well as ground covers.

In case of trees and shrubs, maximum species belongs to the Fabaceae family followed by Arecaceae and Moraceae whereas maximum herbaceous plants belong to the Poaeceae family followed by Asteraceae and Lamiaceae family.

From the findings of the research, it was found that, only 6 species represent >40% frequency among all species whereas 8 species had shown >25% frequency in all the study area whereas, *Swietenia macrophylla* showed the highest frequency (54.72%) and density ((145.28%) among all the tree species and *Combretum indicum* represent the highest frequency (37.50%) and density (96.67%) among all the shrub species. In all the study area, comparatively high density/ ha (1785.62 trees/ ha), DBH (458.59 cm/ha),

basal area/ ha (182.79 m²/ha) were found because of higher plant population in small area which is a common feature of urban areas, where incondite and unplanned plantation of trees are occurred.

To understand structure of urban forest, height class and DBH class measurement is essential (Spencer 1986). From the findings of this study, it is revealed that majority of trees were found in between 6-9m height class whereas maximum shrubs were found in 1-3m height class. In case of DBH, maximum number of trees and shrubs were found in 0-15 cm DBH class. This findings indicates that maximum trees and shrubs represents comparatively lower height and DBH class which means, in urban area of DSCC, majority of tree and shrub population are in their young stage and still growing.

Importance value index express the dominance of a species in a given area among all the plant population (Pedlowski *et al.*, 2002). It was found that in four study area of DSCC, the dominant tree species was *Polyalthia longifolia* (IVI = 103.39 %) followed by *Swietenia macrophylla* (IVI= 85.61%) and *Samanea saman* (IVI= 83.44%), respectively. On the other hand, highest relative basal area (48%) and the highest relative frequency (12.31%) was shown by *Samanea saman* whereas, the highest relative density (300%) was shown by *Polyalthia longfolia*, respectively.

From the analysis of structure and composition of green resources around Dhaka South City Corporation, it can be easily explicable that the green resource is unorganized and promiscuous with different forms, pattern and performance. Only a few places (ex: Ramna park, Sohrawardi uddan, Osmani uddan, Boldha garden, & Dhanmondi lake) represent maximum amount of vegetation of this city corporation but they are not well planned and well managed.

CONCLUSION

Urban vegetation of Dhaka South City Corporation is not evenly distributed and not properly planned with very few exceptions. Based on the objective and findings of the research, the following conclusion can be drawn:

- This city corporation holds significant number of plant species but the quantity of individual plant is not adequate to enhance the urban environment. In this city corporation, among trees and shrubs *Swietenia macrophylla, Polyalthia longifolia, Cocos nucifera, Samanea saman, Artocarpus heterophyllus, Combrectum indicum, Tabernaemonlana divaricata,* are found dominant. Among four different habitats, maximum number of tree and shrub coverage were found in parks (44%) and minimum numbers of them were found in playgrounds (only 4%) whereas, gardens and roadsides were represented similar tree and shrub population (26%). In case of herb species, again parks represented highest percentage (74.6%) followed by gardens (46.83%), roadsides (18.25%) and playgrounds (4.76%). These findings indicated that, park areas represented maximum vegetation but it is very unfortunate that maximum parks are now under threat of over exploitation which in future may lose its tree density and diversity characteristics drastically.
- Structural attributes of an urban forest generally indicate the growth stage of the plant population. In DSCC, maximum trees are found in between 6-9 m height class and maximum shrubs were found in between 1-3 m height class whereas in case of DBH class, maximum tree and shrub population were found in between 0-15 cm. From the findings of the research area it can be clearly stated that majority of the tree and shrub populations are in their young age and poor in diameter. Different plantation programme may be helpful to enhance the urban vegetation of DSCC.

RECOMMENDATION

There are huge opportunities to enhance the urban plantation in Dhaka South City Corporation. Some recommendations related to urban greening are given below:

- From the findings of the study it can be clearly stated that the number of individual plant population in DSCC is not significant and maximum number of plant population are found in two or three areas (ex. Ramna park, Sohrawardi uddan, Dhanmondi lake etc.). For expanding the vegetation area in DSCC, governmental organization, forest department, local NGO's and other responsible organizations should implement tree plantation and city beautification programme in specific areas, roadsides and avenues.
- Existing parks and other green areas are the main component of urban green infrastructure of DSCC. Establishment of new small parks, play grounds, garden in expanding areas of the city and proper green structure Plan could be effective to increase urban greeneries and will be helpful to offer a healthy living for the city dwellers.

REFERENCE

- Abid, K., (2013). Green spaces and air quality of Dhaka city: An analysis using GIS and statistical approaches. Ph.D. thesis, Department of geography and environment, Jahangirnagar University, Savar, Dhaka.
- Akbar, K.F., Ashraf, I. and Shakoor, S., (2014). Analysis of urban forest structure, distribution and amenity value: a case study. The Journal of Animal & Plant Sciences.24 (6): 1636-1642.
- Akhter, M. H., Kamal, M., Shafiul A.M. and Mainuddin M., (2015). Composition and diversity of tree Species in Kamalachari Natural Forest of Chittagong South Forest Division, Bangladesh. Journal of Forest and Environmental Science.31 (3): 192-201.
- Alam, S., (2012). Vanishing open spaces, parks and play grounds. The Financial Express, http://www.thefinancialexpress-bd.com/more.phpnews_id=126773date=2012-04-16.
- Aladesanmi, D. A., Jonathan, C.O. and Oluwaseun, A., (2016). Assessment of urban forest tree species population and diversity in Ibadan, Nigeria. Environment and Ecology Research. 4(4):185-192.
- Amin, M., Alamgir, M. and Bhuiyan, M. R., (2005). Structural composition based on diameter and height class distribution of a deforested area of Chittagong, Bangladesh. Journal of Applied Sciences.5:227-231.
- Annaselvam, J. and Parthasarathy, N., (1999). Inventories of understory plants in a tropical evergreen forest in the Anamalais, Western Ghat, India. Ecotropica. 5: 197-211.
- Andreu, M.G., Friedman, M. H., Landry, S. M. and Northrop, R. J., (2008). City of Tampa urban ecological analysis 2006-2007. Final Report to the City of Tampa, April 24, 2008. City of Tampa, Florida.
- Ansari, A.N., (2008). Opportunities and challenges of urban and peri-urban forestry and greening in Bangladesh; Dhaka city as a case. Ph.D. thesis, Department of landscape management, design and construction faculty of landscape planning, Horticulture and Agricultural Science Swedish University of Agricultural Sciences (SLU) Alnarp, Sweden.

- Asaduzzaman, N., Rajasree N., Jashimuddin, M. and Akhter, M. H., (2016). Tree species composition and regeneration status of Shitalpur Forest Beat under Chittagong North Forest Division Bangladesh. Advances in Ecology.26 (1): 1-7.
- Banglapedia, (2006). National Encyclopedia of Bangladesh", CD edition, Asiatic Society of Bangladesh.
- BBS, (2012). http://www.bbs.gov.bd.
- Benedict, M. and Mcmahon, E.T., (2002). Green Infrastructure: Smart conservation for the 21 Century. The Conservation Fund, Washington, D.C.
- Burton, M. L., (2006). Riparian woody plant diversity, composition, and structure across an urban-rural land use gradient in the piedmont of Georgia. Ph. D. thesis, The Graduate Faculty of Auburn University. Washington D.C. Island, Washington, USA.
- Carter, J. (1993). The potential of urban forestry in developing countries: A concept paper. FAO, Rome, Italy.
- Chen, S.S. and Jim, C.Y., (2003). Quantitative assessment of the treescape and cityscape of Nanjing, China. Landscape Ecology.18: 395–412.
- Chowdhury, A., (2004). Parks in the urban environment: an analytical study with reference to urban parks of Dhaka. Ph. D. Thesis, Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology, Dhaka.
- City of Sydney Urban Forest Strategy Adopted February 2013.
- Coder, D. and Kim, D., (1996). Identified benefits of community trees and forests. Ph. D. thesis, The United States Department of Agriculture and Counties of the state cooperating, University of Georgia.
- Cook, D. I. and Van. D. F., (1977). Suburban Noise Control with Plant Materials and Solid Barriers. Research Bulletin EM-100 Rocky Mountain Research Station, USDA Forest Service, University of Nebraska, Lincoln, NE.

Current affairs, June (2016). professorsbd.com

- Cynnamon, D. B. and DaveKendalc, C. N., (2013). The effects of land tenure and land use on the urban forest structure and composition of Melbourne. Urban Forestry & Urban Greening.12: 417–425.
- Dallmeier, f., Taylor, c, Mayne, j., Kabel, m. & Rice, r. (1992). Effects of Hurricane Hugo on the Bisley biodiversity plot, Luquillo Biosphere Reserve, Puerto Rico. In Long-term Moniloring of Biological Diversity in Tropical Forest Areas: Methods for Establishment and Inventory of Permanent Plots. MAB Digest 11. UNESCO, Paris. 72 pp.
- Deb, J.C., Roy, A. and Wahedunnabi, M., (2015). Structure and composition of understory treelets and overstory trees in a protected area of Bangladesh. Forest Science and Technology. 11 (2): 76-85.
- Deb, J. C. and Halim, A., (2013). Density, diversity, composition and distribution of street trees in Sylhet Metropolitan City of Bangladesh. Arboricultural Journal: The International Journal of Urban Forestry. <u>http://dx.doi.org/10.1080/03071375.2013.770656</u>.
- Diogo, J. S., Alexandre, E. R., Lima, D. O. and Carlos, L. F., (2014). Floristic composition and structure of an urban forest remnant of Fortaleza, Ceará. Gaia Scientia.8 (1): 266-278.
- Dobbs, C., Escobedo, F.J. and Zipperer, W.C., (2011). A framework for developing urban forest ecosystem services and goods indicators. Landscape and Urban Planning. 99:196–206.
- DeGraaf, R.M. and Wentworth, J.M., (1986). Avian guild structure and habitat associations in suburban bird communities. Urban Ecol. 9:399-412.
- Dwivedi, P., Rathore, C. S. and Dubey, Y., (2009). Ecological benefits of urban forestry: The case of Kerwa Forest Area (KFA), Bhopal, India. Applied Geography, Vol. 29(2), pp.194-200.
- Dwyer, J.F., Gregory, E., Herbert, W. and Rowan A., 1992. Assessing the benefits and costs of the urban forest. Journal of Arboriculture.18: 227-234.
- Dhaka Wikipedia, https://en.wikipedia.org/wiki/Dhaka.
- Dhaka South City Corporation Wikipedia, the free encyclopedia.

Dhaka South City Corporation, http://www.dhakasouthcity.gov.bd/

- Escobedo, F., Jennifer A.S. and Wayne, Z., (2009). Gainesville's Urban Forest Structure and Composition. Gainesville, Florida. Ph. D. thesis, School of Forest Resources and Conservation, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida.
- El Lakany, H. (Ed.). (1999). Urban and Peri-Urban Forestry: Case Studies in Developing Countries. Food and Agriculture Organization, Rome, Italy.
- Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walke, B. and Norberg, J., (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment.1:488–494.
- FAO (2008), Project of growing greener cities. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Fahey, R. T., Bowles, M. L. and Mcbride, J. L., 2012. Origins of the Chicago Urban Forest: Composition and structure in relation to pre-settlement vegetation and modern land use. Arboriculture & Urban Forestry.38:181–193.
- Farhan M. H. M., Hossain M. R. and Haque A.M., (2013). An Assessment of the Quality of major parks in Dhaka. M.S. thesis, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh,
- Flávia, R.C., (2004). Structure and composition of the ground-herb community in a terra-firme. Central Amazonian forest. Acta Amazonica.34 (1): 12-45.
- Flood Action Plan (FAP) 8A. (1991). Master Plan for Greater Dhaka Protection Project. Dhaka: Japan International Cooperation Agency.
- Forrest, M., Konijnendijk, C. C. and Randrup, T. B., (1999). COST Action E12—Research and Development in Urban Forestry in Europe.Official Printing Office of the European Communities, Luxembourg.

- Fuller, R. A., Irvine, K. N., Devine, W. P., Warren, P. H. and Gaston, K. J., (2007). Psychological benefits of green space increase with biodiversity.BiologyLetters.3:390–394.
- Godefroid, S. and Koedam, N., (2003). Distribution pattern of the flora in a peri-urbanforest: an effect of the city-forest eco tone. Landscape and Urban Planning. 65:169–185.
- Godwin E., (2015). Tree Species composition and diversity in oban Forest Reserve, Nigeria. Journal of Agricultural Studies.3 (1): 10-24.
- Grey, G.W. and Deneke, F. J., (1986). Urban forestry, 2nd ed. John Wiley and Sons. New York. pp.299-355.
- Giliba R. A., Boon E. K., Kayombo C.J., Musamba E. B., Kashindye A. M. and Shayo P.F., (2011). Species Composition, Richness and Diversity in Miombo Woodland of Bereku Forest Reserve, Tanzania. Acta amazonica. 2 (1):43-22.
- Gunwoo, K., (2016). Assessing Urban Forest Structure, Ecosystem Services, and Economic Benefits on Vacant Land. Sustainability. MDPI.8: 679.
- Hasan, S.R., (2012). The failing city. New Age, http://www.newagebd.com/special.php spid=2 id=8, April 23.
- Hossain, M. K., Alam, M. K. and Danesh, M. M., (2008). Forest restoration and rehabilitation in Bangladesh," in Keep Asia Green Volume III South Asia, D. K. Lee, Ed., vol. 20–23 of IUFRO World Series, pp. 21–65, IUFRO, Vienna, Austria.
- Hossain, M. K. and Akhter, M. H., (2016). Composition and diversity of tree species in Dudhpukuria-Dhopachori Wildlife Sanctuary of Chittagong (South) Forest Division, Bangladesh. Advances in Ecology.Article ID 5947874, pp.1-7.
- Huang, J., Akbari, H., Taha, H. and Rosenfeld, A. (1987). The potential of vegetation in reducing summer cooling loads in residential buildings. J. Climate Appl. Meteorol. 26: 1103-16.
- Heynen, N.C. and Lindsey, G., (2003). Correlates of urban forest canopy cover: implications for local public works. Public Works Management & Policy. 8:33–47.

- Ibrahim, H. K., (2014). Basic information of Dhaka South City Corporation; the 3rd Asia smart City Conference (29-30 October), Yokohama.
- Islam, M. M., Kawsar, M. A. and Ahmed, R.U., (2002). Open space in Dhaka city: A study on use of parks in Dhaka city corporation area. Ph. D. thesis, Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
- Islam M., Mahmud A. and Islam S. M. D., (2015). Open Space Management of Dhaka City, Bangladesh: A Case Study on Parks and Playgrounds. International Research Journal of Environment Sciences. 4 (12): 118-126.
- Jensen, M., (1993). Soil conditions, vegetation structure and biomass of a Javanese home garden. Agroforest. Syst. 24: 171-186.
- Jim, C. Y. and Liu, H. T., (2001). Species diversity of three major urban forest types in Guangzhou City, China. Forest Ecology and Management.146:99–114.
- Kendal, D., Williams, N. S. G. and Williams, K. J. H., (2012). Drivers of diversity and tree cover in gardens, parks and streetscapes in an Australian city. Urban Forestry & Urban Greening.11:257–265.
- Kent, M. and Coker, P., (1992). Vegetation description and analysis : a practical approach, (2nd Ed.) Ghent University Library. London: Belhaven press.
- Konijendijk, J. K., (2005). Urban Forests and Trees (2nd Ed.) Springer Berlin Heidelberg New York
- Kuchelmeister, G., (1998). Urban forestry in the Asia-Pacific Region: status and prospects. APFSOS Working Paper No. 44. FAO, Forestry Policy and Planning Division and Regional Office for Asia and the Pacific, Rome/Bangkok.
- Kuchelmeister G. (1999). Urbanization in developing countries Time for action for National forest programs and international development cooperation for the urban millennium.
 Paper presented at Forest Policy Research Forum: The Role of National Forest Programs to Ensure Sustainable Forest Management, 14-17 June, 1999, Joensu, Finland.

- Kumar B. M., George, S. J. and Chinnamani S., (1994). Diversity, structure and standing stock of wood in the homegardens of Kerala in peninsular India. Agroforestry Systems 25: 243-262.
- Kwit, C. and Platt, J., (2003). Disturbance history influences regeneration of non-pioneer understory trees. Ecology. 84(10): 2575–258.
- Lilia, B., Bearder, K. S. and Gunawardene, A., (2012). Habitat Use by the Red Slender Loris (Loris tardigradus tardigradus) in Masmullah Proposed Forest Reserve in Sri Lanka. Advances in Prosimian Biology. 10: 79-87.
- Lydia, C. and Jaume, T., (2009). Ecological Services of Urban Forest in Barcelona. Ph. D. thesis, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona Spain.
- Maco, S.E. and McPherson, E.G., (2003). A practical approach to assessing structure, function and value of street tree populations in small communities. Journal of Arboriculture. 29:9-84.
- Mamun, M., Akhter, H., Hossain, M. K. and Alam, S., (2015). Quantifying Diversity and Composition of Tree Species in Secondary Hill Forests of CHUNATI Forest, Chittagong, Bangladesh. Indian Forester.141 (5): 566-572.
- Maradana, T. N. and Kumar, A. N., (2016). Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India.Journal of Asia-Pacific Biodiversity.9 (3): 328-334.
- Mayeed, M. and Choudhury, N. Y., (1996). Agriculture in urban Context: A case Study of Dhaka City. Oriental Geographer. 40:22-35.
- Mazumder, S. T., (2014). Impact of Vegetation in Urban Open Spaces in Dhaka City; In Terms of Air Temperature.30th International Plea Conference.16-18 December 2014, CEPT University, Ahmedabad.

- Mowla, Q.A., (2005). Eco Design and Planning for Sustainability in Urban Dhaka, International Conference of the Bangladesh Geographical Society, Oriental Geographer, December 9-11, Dhaka Bangladesh.
- Mowla, Q. A., (2011). Crisis in the Environment of Dhaka: An Overview, Conference on Engineering Research, Innovation and Education 2011, CERIE 2011, 11-13 January, Sylhet, Bangladesh.
- Mowla, Q. A. and Islam, M. S., (2013). Natural Drainage System and Water Logging in Dhaka: Measures to address the Problems.Journal of Bangladesh Institute of Planners.6: 23-33.
- McBride, J. R. and Jacobs, D. F., (1986). Presettlement forest structure as a factor in urban forest development. Urban Ecol.9:245-66.
- McBride, R.J., (2008). A Method for Characterizing Urban Forest Composition and Structure for Landscape Architects and Urban Planners. Arboriculture & Urban Forestry.34(6):359– 365.
- McPherson, E. G., Nowak, D. J., Sacamano, P. L., Prichard, S. E. and Makara, E. M., (1993). Chicago's Evolving Urban Forest: Initial Report of the Chicago Urban Forest Climate Project, General Technical Report No. NE-169, U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station, Radnor, PA.
- McPherson, E., Nowak, D. J. and Rowntree, R. A., (1994). Chicago's Urban Forest Ecosystem: Results of the Chicago Urban Forest Climate Project, General Technical Report No. NE-186, U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Radnor, PA.
- McPherson, E., Nowak, D. J., Rowntree, R. A. and Gordon, H., (1997). Quantifying urban forest structure, function, and value: the Chicago Urban Forest Climate Project.Urban Ecosystems. (1): 49-61.
- McPherson, E. G., (1998). Structure and sustainability of Sacramento's urban forest. J. Arboric. 24(4):174

- McPherson, E. G. and J. R. Simpson. (1999). Carbon Dioxide Reduction through Urban Forestry: Guidelines for Professional and Volunteer Tree Planters. Gen. Tech. Rep. PSW-171. U.S. Department of Agriculture, Forest Service, Pacific Southwest Research Station, Albany, CA. 237 pp.190.
- Miller, R.W., (1997). Urban Forestry: Planning and managing urban green spaces. 2nd Ed. Prentice Hall, New Jersey.
- Michael, G. A., Melissa, H. F. and Robert, J. N., (2009). The structure and composition of Tampa's urban forest. Ph. D. thesis, School of Forest Resources and Conservation Department, IFAS Extension Hillsborough County, Gainesville, FL 32611.
- Miller, R., (1988). Urban Forestry Planning and Managing Urban Greenspaces, 2nd ed. Prentice Hall, New Jersey, USA.pp.28-92.
- Moore, P.D. and Chapman, S.B., (1986). Methods in Plant Ecology. Second edition.
- Muthuramkumar, S. and Parthasarathy, N., (2000). Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India. Diversity Distributions.6(1):1–14.
- Naidu, M. & Kumar, A., (2016). Tree diversity, stand structure, and community composition of tropical forests in Eastern Ghats of Andhra Pradesh, India. Journal of Asia-Pacific Biodiversity.(2016): pp. 1-7.
- Nasir, M. U., (2006). The relationship between Urban Forestry and Poverty Alleviation; Dhaka as a case study. Ph. D. thesis, Degree project within Urban Forestry and Urban Greening (P0401), Dept. of Landscape Management & Horticultural Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
- Nath, T. K., Hossain, M. K. and Alam, M. K., (1998). Diversity and composition of trees in Sitapahar forest reserve of Chittagong Hill Tracts (South) forest division Bangladesh. Ann. For.6 (1):1–9.
- Nagendra, H. and Gopal, D., (2010). Tree diversity, distribution, history and change in urban parks: studies in Bangalore, India. Urban Ecosystem, DOI 10.1007/s11252-010-0148-1.

- Neema. M. N., Hossain. M. R., Haque. A. M. and Farhan. M. H. M., (2014). Multi-criteria evaluation of quality of existing urban parks in Dhaka city-towards achieving livable city. International journal of environmentl.3:2091-2854.
- Nehrin, K. and Quamruzzaman, J. M., (2004). Status of parks and garden in old Dhaka. Ph. D. thesis, Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
- Nowak, D.J., (1993). Historical vegetation change in Oakland and its implications for urban forest management. J. Arboricult.19 (3): 13-19.
- Nowak, D. J., (1994). Understanding the structure of urban forests. J. Forestry. 92:36-41.
- Nowak, D. J., Crane, D. E. and Stevens, J. C., (2006). Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening 4(3-4): 115-123.
- Nowak, D. J., Daniel, Jack, E. C., Robert, E. H., Jeffrey, T. W. and Jerry B., (2008). A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem Services. Arboriculture & Urban Forestry.34 (6): 347–358.
- Nowak, D. J., Daniel, E. C. and Robert, E. H., (2009). Assessing Urban Forest Effects and Values; Chicago's Urban Forest. Northern research station, Resource Bulletin NRS-37, USDA.
- Nowak, D. J., Hoehn, R., Crane, D. E., Weller, L. and Davila, A., (2011). Assessing Urban Forest Effects and Values: Los Angeles's Urban Forest. USDA Forest Service, Northern Resource Bulletin NRS-47, Newtown Square, PA, p. 30.
- Nowak, D. J., Cumming, A. B., Twardus, D., Hoehn, R. E., Brandeis, T. J. and Oswalt, C. M., (2012). Urban Forests of Tennessee, 2009. General technical report. SRS-149. U.S. Department of Agriculture, Forest Service, Ashville, NC, p. 52.
- Oke, T. R., (1989). The micrometeorology of the urban forest. Philos. Trans. R. Soc.4: 324-549.

- Okiror, P., Chono, J., Nyamukuru, A., Lwanga, J. S., Sasira, P. and Diogo, P., (2012). Variation in Woody Species Abundance and Distribution in and around Kibale National Park, Uganda. ISRN Forestry.20:1–9.
- Pandey S. K. and Shukla R. P. (2003). Plant diversity in managed sal (Shorea robusta) forests of Gorakhpur, India: species composition, regeneration and conservation. Biodiversity conservation. 12: 2295-2319.
- Pedlowski, M.A., Silva, V. A. C., Dadell, J. C. and Heynen, N. C., (2002).Urban forest and environmental inequality in Campos dos Goytacazes Riode Janeiro, Brazil. Urban Ecosystems. 6:9–20.
- Rafael , L. and Florian, W., (2011). Forest structure and tree species composition of the understory of two central Amazonian várzea forests of contrasting flood heights. Flora -Morphology, Distribution, Functional Ecology of Plants. 206: 251–260.
- Rahman, A. A. and Alam, M., (2005). Dhaka City, state of environment.United Nations Environment Programme, Bangladesh Centre for Advanced Studies.
- Rahman, M. Z. and Ahmed, S. S., (2012). Urban forestry for greencity, The Daily Star, fromhttp://archive.thedailystar.net/newDesign/newsdetails. php?nid=250707 Retrieved 22 September,
- Ramadhanil, S. and Dede S., (2008). Structure and composition of understory plant assemblages of six land use types in the lore Lindu national park, Central Sulawesi, Indonesia. Bangladesh J. Plant Taxon. 15 (1): 1-12.
- Ramage, B. S. and Roman, L., (2013). Relationships between urban tree communities and the biomes in which they reside. Applied Vegetation Science.16:8–20.
- Rebecca W. D., (2015). Two Hundred Years of Forest Change: Effects of urbanization on tree species composition and structure. Arboriculture & Urban Forestry. 41 (3): 136–145.

- Regina, C. C., (2004). Structure and composition of the ground-herb community in a terra-firme Central Amazonian forest. Acta Amazonica.34(1): 53 59.
- Ricardo, D. and Vânia, R. P., (2002). Tree structure and species composition changes in an urban tropical forest fragment (são paulo, Brazil) during a five-year interval. Boletim de Botânica da Universidade de São Paulo. 20: 1-12.
- Rogers, K., Sacre, K., Jessica, G. and Doick, K., (2015). Valuing London's urban forest. Results of the London i-Tree Eco Project.
- Roy, A. & Wahedunnabi, M., (2015). Structure and composition of understory treelets and overstory trees in a protected area of Bangladesh. Journal Forest Science and Technology. 11:76-85.
- Rowntree, R. A., (1984). Ecology of the urban forest-part I: Structure and composition. Urban Ecol.vol. 8, pp.1-178.
- Rowntree, R.A., 1986. Ecology of the urban forest- introduction to part II. Urban Ecology 9,229-243
- Rowntree, R. A. and Nowak, D. J., (1991). Quantifying the role of urban forests in removing atmospheric carbon dioxide. J. Arboricult.17: 269-75.
- Sakera, S. R., (2011). Identify appropriate conservation strategies and their importance for the local people in Bangladesh. Institute of Silviculture. Ph. D. thesis, Department of Forest and Soil Sciences ,University of Natural Resources and Applied Life Sciences Vienna, Austria.
- Salam, M. A., Noguchi, T. and Koike, M., (1999). The causes of forest cover loss in the Hill Forests in Bangladesh. Geo Journal. 47(4): 539–549.
- Salim, M. U., Rana, M. R., Hossain, M. S. C. and Akhter, S., (2009). Current Status and Potentiality of Forest Resources in a Proposed Biodiversity Conservation Area of Bangladesh. Journal of Forest Science.25 (3): 167-175.

- Sampson, R. N., (1989). A new vision for our communities; In Shading Our Cities (Gary Moll and Sara Ebenreck, (eds.), pp. 3-12. Island Press, Washington, DC.
- Schroeder, H. W. and Anderson, L. M., (1984). Perception of personal safety in urban recreation sites. J. Leisure Res. 16:178-94.
- Schroeder, H. W. (1986). Estimating park tree density to maximize landscape aesthetics. J. Environ. Manage. 23:325-33.
- Shafroth, P. B., Stromberg, J. C. and Patten, D. T, (2002). Riparian vegetation response to altered disturbance and stress regimes. Ecological Applications.12(1):107–123.
- Shankar U., (2001). A case of high tree diversity in a sal (Shorea robusta) dominated low land forest of Eastern Himalaya: Floristic composition, regeneration and conservation. Current sciences. 81(7): 776-787.
- Shin, I. A. and Kanehiro, K., (1999). Structure, composition and species diversity in an altitudesubstrate matrix of rain forest tree communities on Mount Kinabalu, Borneo.Plant Ecology. 140:139-157.
- Shukla, S. R. and Chandel, S. P., (1980). Plant ecology. 4th Edn. Chandel S. and Co. Ramnagar, New Delhi –110055. P.197.
- Shawn, M. L., Robert, J. N. and Michael, G. A., (2013). The structure, composition, function and economic benefits of trees and the urban forest. City of Tampa 2011 Urban Forest Analysis, September report.
- Siddiqui, M. M. R., (1990). Recreational facilities in Dhaka City: a study of existing parks and open spaces. MURP thesis, Department of Urban and Regional Planning, Bangladesh University of Engineering and Technology, Dhaka.
- Spencer, R., (1986). Fashions in street tree planting in Victoria. Landscape Australia. 4:304–309.
- Swampy P. S., Sundarapandian S. M., Chandrasekar P. and Chandrasekaran S., (2000). Plant species diversity and tree population structure of a humid tropical forest in Tamil Nadu, India. Biodiversity conservation.9:1643-1669.

- Tara, L. E., & Margaret, M. C., (2011). Vegetation composition and structure of woody plant communities along urban interstate corridorsin Louisville, KY, U.S.A. Urban Ecosystem,vol. 14 (2011): 501–524.
- Tawhid, K., G., (2004). Causes and effects of water logging in Dhaka City, Bangladesh. Ph. D. thesis, Department of Land and Water Resource Engineering, Royal Institute of Technology, Stockholm.
- Trammel, L. E. and Margaret, M. C., (2011). Vegetation composition and structure of woody plant communities along urban interstate corridors in Louisville, KY, U.S.A. Urban Ecosystem.14: 501-524.
- Tenneson, K., (2013). The residential urban forest: linking structure, function and management.Ph. D. thesis, Department of Urban Design and Planning. University of Washington, USA.
- Timilsina, N., Ross, M. S. and Heinen, J. T., (2007). A community analysis of sal (Shorea robusta) forest in the Western Terai of Nepal. Forest ecology management.241 (1): 223-234
- Uddin, N. M., Alam, O., Uddin, M. M. and Hoque, A. R. (2015). Diversity and distribution of tree species in the hills of Chittagong Metropolitan Area, Bangladesh. Journal of Biodiversity and Environmental Sciences (JBES). 6 (4): 89-99.
- UN-Habitat (2013). State of the World's Cities 2012/2013: Prosperity of Cities (New York: Routledge).
- United Nations Population Division, (2015). World Urbanization Prospects: The 2014 Revision. New York.
- Urban Planning Department, Dhaka South City Corporation (DSCC).
- UNDP and FAO, (1998). Land resources appraisal of Bangladesh for agricultural development. Report no. 2. Agro-ecological regions of Bangladesh. United Nations Development Programme, FAO, Rome. p. 212-221.

- World Bank, (2007). Improving Living Conditions for the Urban Poor: Bangladesh Development Series Paper No. 17.World Bank, Washington DC, USA.
- Webb E. L. and Sah R. N., (2003). Stracture and diversity of natural and managed Sal (Shorea robusta Gaertn.f.) forest in the Terai of Nepal. Forest ecology management.176: 337-353.
- Yang, J., McBride, J., Zhou J. and Sun, Z., (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening 3(2): 65-78
- Zaman, S., Salah, U., (2014). Structure and Diversity of Homegarden Agroforestry in Thakurgaon District, Bangladesh. The Open Forest Science Journal.7: 38-44.
- Zhao, M., Escobedo, F. J., Wang, R., Zhou. Q., Lin, W., and Gao, J., (2013). Woody vegetation composition and structure in peri-urban Chongming Island, China. Environmental Management. 51:999–1011.
- Zhao, M., Escobedo, F. J. and Staudhammer, C. L., (2010). Spatial patterns of a subtropical, coastal urban forest: implications for land tenure, hurricanes, and invasives. Urban Forestry & Urban Greening.9:205–214.
- Zhu, H. N., Xing, Y. H., Chang, F. L. and Kamran K. A., (2008). Assessing Urban Forest Structure and Health in Shenyang, China. Arboriculture & Urban Forestry. 34 (6): 379– 385.

APPENDICES

Appendix 1. Weather data of the experimental site during the period from June to August, 2016

Month	Air temperature		Humidity (%)	Rainfall (mm)	Evaporation (hrs.)	
	Max.	Min.	Avg.			
June	30.8	25.43	28.13	84.27%	260.3	51.3
July	30.26	23.47	26.87	80.84%	598.3	109.2
August	30.80	21.90	25.75	86.90%	380.5	130.4

Source: Weatherbase.com

Appendix 2. Basic information of Dhaka South City Corporation

SL No.	Item	Quantity
1.	Area	109.19 Sq. Km.
2.	Population	7.56 millions
3.	Zone	5 nos.
4.	Ward	57 nos.
5.	Flyover	3 nos.
6.	Foot over bridge	40 nos.
7.	Educational institutions	2 nos.
8.	Hospital	2 nos.
9.	Maternity centre	1 nos.
10.	Community centre	35 nos.
11.	Parks	27 nos.
12.	Playgrounds	10 nos.
13.	Gardens	3nos.
14.	Graveyards	3 nos.
15.	Cemeteries	2 nos.
16.	Gymnasium	21 nos.
17.	Market	70 nos.
18.	Musice school	12 nos.
19.	Underpass	1 nos.
20.	Road	781.83 km
21.	Footpath	217.38 km
22.	Drain (open + pipe)	466.43+ 495.43 km
23.	Traffic signal	40 nos.
24.	Sodium light	7996 nos.

SL No.	Species Name	RF (%)	RD (%)	RBA (%)	IVI
1.	Polyalthia longifolia	300	7.69	2.47	103.39
2.	Swietenia macrophylla	230	10.77	16.05	85.61
3.	Samanea saman	190	12.31	48.00	83.44
4.	Dalbergia sissoo	60	6.15	5.14	23.77
5.	Cocos nucifera	60	7.69	1.19	22.96
6.	Ficus bengalensis	50	6.15	5.32	20.49
7.	Anthocephalus sinensis	50	4.62	6.68	20.43
8.	Terminalia catappa	50	3.08	2.14	18.41
9.	Delonix regia	40	4.62	1.31	15.31
10.	Syagrus romanzoffiana	40	3.08	0.63	14.57
11.	Terminalia arjuna	20	3.08	5.93	9.67
12.	Mangifera indica	20	3.08	1.41	8.16
13.	Tectona grandis	20	1.54	1.73	7.75
14.	Mimusops elengi	20	3.08	0.02	7.70
15.	Albizia richardiana	20	1.54	0.23	7.26
16.	Artocarpus heterophyllus	20	1.54	0.19	7.24
17.	Leucaena leucocephala	20	1.54	0.14	7.23
18.	Melia azedarach	20	1.54	0.06	7.20
19.	Callistemon citrinus	10	1.54	0.87	4.14
20.	Ziziphus jujuba	10	1.54	0.16	3.90
21.	Acacia auriculiformis	10	1.54	0.14	3.89
22.	Emblica officinalis	10	1.54	0.03	3.86
23.	Lagerstroemia speciosa	10	1.54	0.05	3.86
24.	Mesua ferrea	10	1.54	0.03	3.86
25.	Borassus flabellifer	10.00	1.54	0.03	3.86
26.	Combretum indicum	10	1.54	0.01	3.85
27.	Bauhinia acuminata	10	1.54	0.01	3.85
28.	Cassia fistula	10	1.54	0.02	3.85
29.	Plumeria obtusa	10	1.54	0.02	3.85

Appendix 3: Relative frequency, Relative density, Relative basal area & IVI for all the plant species in playgrounds of DSCC

Appendix 4. Relative frequency, Relative density, Relative basal area and IVI for all the plant species in parks of DSCC

SL No.	Species Name	RF (%)	RD (%)	RBA (%)	IVI
1.	Swietenia macrophylla	3.28	103.75	6.96	38.00
2.	Combretum indicum	3.28	72.50	0.08	25.29
3.	Polyalthia longifolia	2.30	66.25	4.68	24.41
4.	Artocarpus heterophyllus	3.72	67.50	1.54	24.25
5.	Delonix regia	2.52	52.50	5.90	20.31
6.	Samanea saman	2.41	40.00	13.18	18.53
7.	Cocos nucifera	2.19	42.50	3.01	15.90

8.	Mangifera indica	2.63	41.25	2.31	15.40
9.	Dypsis lutescens	1.64	43.75	0.10	15.16
10.	Tabernaemonlana divaricata	1.75	37.50	2.68	13.98
11.	Thuja occidentalis	1.42	40.00	0.08	13.83
12.	Mimusops elengi	1.97	36.25	1.11	13.11
13.	Ficus bengalensis	2.08	28.75	7.28	12.70
14.	Acacia auriculiformis	1.64	28.75	2.86	11.08
15.	Albizia richardiana	2.41	25.00	4.95	10.79
16.	Codiaeum variegatum	1.09	28.75	0.02	9.95
17.	Eucalyptus camaldulensis	1.20	21.25	3.00	8.49
18.	Tectona grandis	1.31	22.50	1.53	8.45
19.	Psidium guajava	1.53	21.25	0.20	7.66
20.	Mussaenda erythrophylla	1.20	21.25	0.02	7.49
21.	Dillenia indica	1.09	18.75	2.29	7.38
22.	Caesalpinia pulcherrima	0.77	21.25	0.02	7.35
23.	Roystonea regia	0.88	20.00	0.87	7.25
24.	Terminalia arjuna	0.98	18.75	1.03	6.92
25.	Alstonia scholaris	1.20	17.50	2.04	6.91
26.	Dracaena aletriformis	0.55	16.25	2.68	6.49
27.	Acacia nilotica	0.77	17.50	1.07	6.45
28.	Rosa rubiginosa	0.44	18.75	0.01	6.40
20.	Terminalia catappa	1.31	16.25	1.07	6.21
30.	Syzygium cumini	1.09	16.25	0.63	5.99
31.	Anthocephalus sinensis	1.20	15.00	1.57	5.92
32.	Bougainvillea glabra	0.98	16.25	0.02	5.75
33.	Casuarinas equisetifolia	0.77	15.00	1.03	5.60
34.	Howea forsteriana	0.44	16.25	0.10	5.60
35.	Hevea brasiliensis	0.98	13.75	2.00	5.58
36.	Ficus virens	0.88	11.25	4.56	5.56
37.	Hibiscus rosa-sinensis	1.20	15.00	0.01	5.41
38.	Syagrus romanzoffiana	0.55	15.00	0.01	5.24
<u> </u>	Jasminum sambac	0.66	15.00	0.17	5.24
40.	Couroupita guianensis	0.55	12.50	1.85	4.96
40.	Azadirachta indica	0.55	13.75	0.34	4.90
41.	Brunfelsia pauciflora	0.00	11.25	2.68	4.91
42.		0.77	13.75	0.01	4.90
45.	Duranta erecta Melia azedarach	0.00		0.01	
			13.75		4.82
45.	Leucaena leucocephala	0.98	12.50	0.73	4.74
46.	Lagerstroemia thorelii	0.33	11.25	1.81	4.46
47.	Lagerstroemia lancasteri	0.88	12.50	0.01	4.46
48.	Livistona chinensis	0.66	12.50	0.00	4.39
49.	Hibiscus rosa-sinensis	0.66	12.50	0.01	4.39
50.	Hamelia patens	0.44	12.50	0.03	4.32
51.	Diospyros blancoi	0.44	11.25	0.73	4.14
52.	Mesua ferrea	0.55	11.25	0.42	4.07
53.	Bauhinia acuminata	0.88	11.25	0.14	4.06
54.	Averrhoa carambola	0.88	11.25	0.02	4.05
55.	Araucaria columnaris	0.66	11.25	0.16	4.02
56.	Elaeis guineensis	0.44	11.25	0.16	3.95

57.	Annona squamosa	0.88	10.00	0.13	3.67
58.	Borassus flabellifer	0.44	10.00	0.51	3.65
59.	Gardenia jasminoides	0.77	10.00	0.01	3.59
60.	Tamarindus indica	0.77	8.75	1.15	3.55
61.	Nyctanthes arbor-tristis	0.57	10.00	0.03	3.53
62.	Cassia fistula	0.66	8.75	0.94	3.45
63.	Streblus asper	0.44	8.75	0.71	3.30
64.	Plumeria obtusa	0.66	8.75	0.23	3.21
65.	Syzygium samarangense	0.66	8.75	0.10	3.17
66.	Erythrina orientalis	0.33	8.75	0.35	3.14
67.	Cordyline fruticosa	0.55	8.75	0.01	3.10
68.	Allamanda cathartica	0.44	8.75	0.01	3.06
69.	Drypetes roxburghii	0.55	7.50	0.49	2.85
70.	Albizia lebbek	0.55	6.25	1.75	2.85
71.	Gustavia augusta	0.33	7.50	0.58	2.80
72.	Citrus grandis	0.66	7.50	0.08	2.74
73.	Ochna squarrosa	0.55	7.50	0.00	2.69
74.	Murraya paniculata	0.33	7.50	0.01	2.61
75.	Areca catchu	0.22	7.50	0.09	2.60
76.	Cassia siamea	0.33	6.25	0.64	2.00
70.	Syzygium Jambos	0.44	6.25	0.35	2.34
77.	Lagerstroemia speciosa	0.55	6.25	0.33	2.34
78.	Ziziphus jujuba	0.55	6.25	0.14	2.31
80.	Emblica officinalis	0.55	6.25	0.07	2.29
81.	Phoenix sylvestris	0.33	6.25	0.04	2.28
81.	Cestrum nocturnum	0.55	6.25	0.20	2.28
82.	jatropha multifida	0.11	3.75	2.68	2.18
<u> </u>	Polyscias fruticosa	0.11	6.25	0.00	2.18
<u> </u>	Heliconia rostrata	0.22	6.25	0.00	2.10
85.	Artabotrys hexapetalus	3.83	2.50	0.01	2.10
80.	Madhuca longifolia	0.44	5.00	0.59	2.11
88.	Litchi chinensis	0.44	5.00	0.39	1.96
<u> </u>	Aegle marmelos	0.44	5.00	0.44	1.90
<u> </u>	0	0.44	5.00	0.17	1.87
<u> </u>	Elaeocarpus serratus	0.33	3.75	1.51	1.80
	Albizia procera				
<u>92.</u> 93.	Artocarpus chaplasha Phyllanthus emblica	0.11	5.00	0.37 0.03	1.83 1.82
	2		5.00		
94.	Terminalia chebula	0.44		0.02	1.82
95.	Nerium indicum	0.44	5.00	0.00	1.81
96.	Millettia peguensis	0.22	5.00	0.20	1.81
97.	Cycas revoluta	0.44	5.00	0.00	1.81
98.	Diospyros cordifolia	0.22	2.50	2.68	1.80
99.	Citrus limonum	0.33	5.00	0.01	1.78
100.	Lawsonia Inermis	0.33	5.00	0.01	1.78
101.	Chukrasia tabularis	0.22	5.00	0.10	1.77
102.	Morus alba	0.11	2.50	2.68	1.76
103.	Anisoptera scaphula	0.11	3.75	1.35	1.74
104.	Calliandra haematocephala	0.22	5.00	0.01	1.74
105.	Pandanus fascicularis Lam.	0.22	5.00	0.00	1.74

10.6	G	0.11	F 00	0.04	1.50
106.	Caryota urens	0.11	5.00	0.06	1.72
107.	Malpighia emarginata	0.11	5.00	0.01	1.71
108.	Dalbergia sissoo	0.33	3.75	0.79	1.62
109.	Adansonia digitata	0.22	2.50	1.70	1.47
110.	Artocarpus lakoocha	0.33	3.75	0.35	1.47
111.	Ficus carica	0.33	3.75	0.32	1.47
112.	Butea monosperma	0.11	3.75	0.52	1.46
113.	Grewia asiatica	0.33	3.75	0.18	1.42
114.	Holmskioldia sanguinea	0.33	3.75	0.00	1.36
115.	Malvaviscus arboreus	0.22	3.75	0.00	1.32
116.	Senna alata	0.22	3.75	0.00	1.32
117.	Gynura procumbens	0.22	3.75	0.00	1.32
118.	Yucca gloriosa	0.11	3.75	0.00	1.29
119.	Saraca asoca	0.22	2.50	0.60	1.11
120.	Ceiba pentandra	0.22	2.50	0.51	1.08
121.	Cassia javanica	0.11	2.50	0.45	1.02
122.	Cordia myxa	0.11	2.50	0.43	1.01
123.	Barringtonia acutangula	0.22	2.50	0.27	1.00
124.	Guaiacum officinale	0.22	2.50	0.26	0.99
125.	Michelia champaca	0.22	2.50	0.24	0.99
126.	Khaya anthotheca	0.22	2.50	0.12	0.95
127.	Holarrhena pubescens	0.22	2.50	0.12	0.95
128.	Sapindus saponaria	0.22	2.50	0.10	0.94
129.	Tecomella undulata	0.11	1.25	2.68	0.93
130.	Abroma augusta	0.11	1.25	2.68	0.93
131.	Gmelina hystrix	0.11	1.25	2.68	0.93
132.	Sterculia foetida	0.22	2.50	0.06	0.93
133.	Ficus religiosa	0.11	2.50	0.16	0.92
134.	Terminalia bellerica	0.22	2.50	0.03	0.92
135.	Cinnamomum camphora	0.22	2.50	0.04	0.92
136.	Carissa carandas	0.22	2.50	0.01	0.91
137.	Melastoma malabathricum	0.22	2.50	0.00	0.91
138.	Epigaea repens	0.22	2.50	0.00	0.91
139.	Phyllunthus acidus	0.22	2.50	0.01	0.91
140.	Brownea coccinea	0.22	2.50	0.02	0.91
141.	Carica papaya	0.22	2.50	0.00	0.91
142.	Coffea arabica	0.11	2.50	0.00	0.87
143.	Punica granatum	0.11	2.50	0.00	0.87
144.	Dieffenbachia seguine	0.11	2.50	0.00	0.87
145.	Yucca gigantea	0.11	2.50	0.00	0.87
146.	Jasminum officinale	0.11	2.50	0.00	0.87
147.	Quisqualis indica	0.11	2.50	0.00	0.87
148.	Capsicum annuum	0.11	2.50	0.00	0.87
149.	Moringa oleifera	0.11	2.50	0.01	0.87
150.	Tabebuia cassinoides	0.11	1.25	0.43	0.59
151.	Plumeria rubra	0.11	1.25	0.27	0.54
152.	Spathodea campanulata	0.11	1.25	1.51	0.54
153.	Aquilaria agallocha	0.11	1.25	0.24	0.53
154.	Phanera purpurea	0.11	1.25	0.16	0.51

155.	Wrightia coccinea	0.11	1.25	0.13	0.50
156.	Stereospermum kunthianum	0.11	1.25	0.12	0.49
157.	Baccaurea motleyana	0.11	1.25	0.12	0.49
158.	Canna indica	0.11	1.25	0.05	0.47
159.	Adenanthera pavonina	0.11	1.25	0.04	0.47
160.	Brugmansia suaveolens	0.11	1.25	0.03	0.46
161.	Magnolia pterocarpa	0.11	1.25	0.01	0.46
162.	Diospyros peregrina	0.11	1.25	0.01	0.46
163.	Solanum melongena	0.11	1.25	0.00	0.45
164.	Averrhoa bilimbi	0.11	1.25	0.00	0.45
165.	Citrus aurantium	0.11	1.25	0.00	0.45
166.	Ficus microcarpa	0.11	1.25	0.00	0.45
167.	Cordia sebestena	0.11	1.25	0.00	0.45
168.	Murraya koenigii	0.11	1.25	0.00	0.45
169.	Tragia involucrata	0.11	1.25	0.00	0.45
170.	Ptychosperma macarthurii	0.11	1.25	0.00	0.45
171.	Citrus sinensis	0.11	1.25	0.00	0.45
172.	Mansoa alliacea	0.11	1.25	0.00	0.45
173.	Vitex negundo	0.11	1.25	0.00	0.45
174.	Jacaranda mimosifolia	0.11	1.25	0.00	0.45
175.	Tecoma stans	0.11	1.25	0.00	0.45
176.	Thespesia populnea	0.11	1.25	0.89	0.33
177.	Pterygota alata	0.11	1.25	0.43	0.18
178.	Bauhinia variegata	0.11	1.25	0.19	0.10
179.	Carthamus tinctorius	0.11	1.25	0.16	0.09
180.	Hardwickia binata	0.11	1.25	0.06	0.06
181.	Delonix pumila	0.11	1.25	0.08	0.06
182.	Bombax ceiba	0.11	1.25	0.07	0.06
183.	zanthoxyllum rhesta	0.11	1.25	0.06	0.05
184.	Rondeletia odorata	0.11	1.25	0.00	0.04
185.	Albizzia julibrissin	0.11	1.25	0.02	0.04
186.	Manilkara zapota	0.11	1.25	0.01	0.04
187.	Mimusop elengi L. veriegata	0.11	1.25	0.00	0.04
188.	Callistemon citrinus	0.11	1.25	0.01	0.04
189.	Phyllanthus reticulatus	0.11	1.25	0.00	0.04
190.	Bixa orellana	0.11	1.25	0.00	0.04
191.	Munesteria Sp	0.11	1.25	0.00	0.04

Appendix 5. Relative frequency, Relative density, Relative basal area and IVI for all the plant species in gardens of DSCC

SL	Species Name	RF (%)	RD (%)	RBA (%)	IVI
No.					
1.	Lagerstroemia speciosa	2.06	63.27	2.61	22.64
2.	Cocos nucifera	2.74	61.22	0.07	21.34
3.	Eucalyptus camaldulensis	2.06	51.02	9.29	20.79

4.	Mangifera indica	3.08	55.10	2.38	20.19
5.	Dalbergia sissoo	2.57	53.06	4.27	19.97
6.	Combretum indicum	2.57	53.06	0.06	18.56
7.	Mesua ferrea	2.23	48.98	1.49	17.56
8.	Swietenia macrophylla	1.71	44.90	3.30	16.64
9.	Samanea saman	1.71	32.65	6.83	13.73
10.	Delonix regia	1.71	32.65	3.31	12.58
11.	Tabernaemonlana divaricata	2.23	34.69	0.88	12.32
12.	Mimusops elengi	1.88	34.69	0.06	12.21
13.	Polyalthia longifolia	1.71	32.65	2.24	12.20
14.	Artocarpus heterophyllus	2.06	32.65	1.82	12.18
15.	Terminalia arjuna	2.06	32.65	1.56	12.09
16.	Anthocephalus sinensis	1.88	28.57	2.82	11.09
17.	Acacia auriculiformis	1.37	28.57	2.65	10.86
18.	Caesalpinia pulcherrima	1.37	28.57	0.12	10.02
19.	Albizia richardiana	1.37	24.49	4.18	10.02
20.	Lagerstroemia lancasteri	1.03	28.57	0.04	9.88
20.	Syzygium cumini	1.03	24.49	1.00	9.07
21.	Azadirachta indica	1.71	24.49	0.53	8.80
22.	Roystonea regia	0.51	22.45	2.99	8.65
23.	Mussaenda erythrophylla	0.31	24.49	0.04	8.46
24.	Borassus flabellifer	0.86	20.41	2.49	7.92
25.	Cassia siamea	1.03	18.37	3.38	7.59
20.		0.68	20.41	0.05	7.05
27.	Dypsis lutescens	1.03		3.36	
	Ficus bengalensis		16.33		6.91
29.	Callistemon citrinus	0.68	18.37	0.32	6.46
30.	Gardenia jasminoides	0.86	18.37	0.01	6.41
31.	Hevea brasiliensis	0.86	16.33	1.83	6.34
32.	Cassia fistula	0.86	16.33	0.86	6.02
33.	Plumeria obtusa	0.86	16.33	0.48	5.89
34.	Tamarindus indica	0.86	14.29	2.46	5.87
35.	Jasminum sambac	0.68	16.33	0.26	5.76
36.	Lawsonia Inermis	0.68	16.33	0.03	5.68
37.	Hibiscus rosa-sinensis	0.86	14.29	0.02	5.05
38.	Mansoa alliacea	0.68	14.29	0.02	5.00
39.	Carica papaya	0.68	14.29	0.03	5.00
40.	Couroupita guianensis	1.03	12.24	1.50	4.92
41.	Ficus virens	0.68	10.20	3.28	4.72
42.	Artocarpus lakoocha	0.86	10.20	2.68	4.58
43.	Syzygium Jambos	0.68	12.24	0.76	4.56
44.	Albizia lebbek	0.51	12.24	0.79	4.52
45.	Livistona chinensis	0.86	12.24	0.01	4.37
46.	Nyctanthes arbor-tristis	0.68	12.24	0.06	4.33
47.	Artabotrys hexapetalus	0.51	12.24	0.06	4.27
48.	Adenanthera pavonina	0.68	10.20	0.88	3.92
49.	Tectona grandis	0.34	10.20	1.01	3.85
50.	Bombax ceiba	0.68	10.20	0.51	3.80
51.	Aquilaria agallocha	0.68	10.20	0.31	3.73
52.	Barringtonia acutangula	0.51	10.20	0.19	3.64

53.	Bauhinia acuminata	0.68	10.20	0.04	3.64
54.	Syzygium samarangense	0.68	8.16	0.88	3.24
55.	Saraca asoca	0.51	8.16	0.94	3.21
56.	Alstonia scholaris	0.68	8.16	0.78	3.21
57.	Terminalia catappa	0.68	8.16	0.63	3.16
58.	Aegle marmelos	0.68	8.16	0.53	3.13
59.	Spondias mombin	0.68	8.16	0.29	3.05
60.	Dillenia indica	0.68	8.16	0.10	2.98
61.	Xylia dolabriformis	0.68	8.16	0.09	2.98
62.	Manilkara zapota	0.68	8.16	0.07	2.97
63.	Morus alba	0.34	6.12	2.45	2.97
64.	Psidium guajava	0.68	8.16	0.04	2.96
65.	Murraya paniculata	0.68	8.16	0.01	2.95
66.	Pimenta dioica	0.68	8.16	0.01	2.95
67.	Dracaena aletriformis	0.51	8.16	0.05	2.91
68.	Cestrum nocturnum	0.51	8.16	0.02	2.90
69.	Elaeocarpus serratus	0.51	8.16	0.02	2.90
70.	Capsicum annuum	0.34	8.16	0.00	2.84
71.	Cordyline fruticosa	0.34	8.16	0.01	2.84
72.	Polyscias fruticosa	0.17	8.16	0.01	2.78
73.	Duranta erecta	0.17	8.16	0.00	2.78
74.	Nandina domestica	0.17	8.16	0.01	2.78
75.	Camellia sasangua	0.34	6.12	0.88	2.45
76.	Leucaena leucocephala	0.51	6.12	0.47	2.37
77.	Phoenix sylvestris	0.34	6.12	0.45	2.31
78.	Melia azedarach	0.51	6.12	0.24	2.29
79.	Moringa oleifera	0.51	6.12	0.09	2.24
80.	Terminalia chebula	0.51	6.12	0.07	2.23
81.	Litchi chinensis	0.51	6.12	0.05	2.23
82.	Citrus grandis	0.51	6.12	0.01	2.23
83.	Averrhoa carambola	0.51	6.12	0.02	2.22
84.	Terminalia bellerica	0.34	6.12	0.17	2.21
85.	Ziziphus jujuba	0.51	6.12	0.04	2.21
	Calliandra haematocephala	0.51	6.12	0.01	2.22
87.	Feronia limonia	0.17	6.12	0.31	2.21
88.	Araucaria columnaris	0.34	6.12	0.09	2.19
89.	Ricinus communis	0.34	6.12	0.06	2.19
90.	Cycas revoluta	0.34	6.12	0.00	2.16
91.	Malpighia coccigera	0.17	6.12	0.00	2.10
92.	Indigofera tinctoria	0.17	6.12	0.02	2.10
93.	Hibiscus rosa-sinensis	0.17	6.12	0.01	2.10
94.	Magnolia champaca	0.34	4.08	1.07	1.83
<u>95.</u>	Sterculia foetida	0.34	4.08	0.92	1.78
<u> </u>	Hyophorbe lagenicaulis	0.34	4.08	0.78	1.74
<u>97.</u>	Araucaria araucana	0.34	4.08	0.29	1.74
<u>97.</u> 98.	Cordia myxa	0.17	4.08	0.29	1.57
<u> </u>	Drypetes roxburghii	0.34	4.08	0.43	1.57
	Magnolia grandiflora	0.34	4.08	0.29	1.57
	Hedychium coronarium	0.34	4.08	0.19	1.54

102	Diospyros peregrina	0.34	4.08	0.14	1.52
	Diospyros blancoi	0.34	4.08	0.07	1.50
	Emblica officinalis	0.34	4.08	0.04	1.49
	Acacia nilotica	0.34	4.08	0.05	1.49
	Averrhoa bilimbi	0.34	4.08	0.03	1.49
	Casuarinas equisetifolia	0.34	4.08	0.04	1.49
	Cananga odorata	0.34	4.08	0.05	1.49
	Punica granatum	0.34	4.08	0.01	1.48
	Murraya koenigii	0.34	4.08	0.02	1.48
	Carissa carandas	0.34	4.08	0.00	1.48
112.		0.34	4.08	0.00	1.48
	Abroma augusta	0.34	4.08	0.00	1.48
	Phyllanthus reticulatus	0.17	4.08	0.11	1.42
	Jasminum angustifolium	0.17	4.08	0.01	1.42
	Pterygota alata	0.17	2.04	1.92	1.38
	Plumeria rubra	0.17	2.04	1.07	1.10
	Amherstia nobilis	0.17	2.04	0.76	0.99
	Stereospermum kunthianum	0.17	2.04	0.74	0.98
	Sterculia villosa	0.17	2.04	0.54	0.92
	Ficus religiosa	0.17	2.04	0.46	0.89
	Mimusop elengi L. veriegata	0.17	2.04	0.45	0.89
123.		0.17	2.04	0.09	0.77
	Anacardium occidentale	0.17	2.04	0.10	0.77
	Garcinia cowa	0.17	2.04	0.09	0.77
	Cuphea micropetala	0.17	2.04	0.11	0.77
	Anogeissus acuminata	0.17	2.04	0.07	0.76
-	Howea forsteriana	0.17	2.04	0.07	0.76
	Petrospermum acerifolium	0.17	2.04	0.06	0.76
	Beaucarnea recurvata	0.17	2.04	0.06	0.76
131.	Bauhinia variegata	0.17	2.04	0.05	0.76
132.		0.17	2.04	0.07	0.76
133.	Ficus carica	0.17	2.04	0.04	0.75
134.	Acacia catechu	0.17	2.04	0.04	0.75
	Allamanda cathartica	0.17	2.04	0.00	0.74
	Antiaris toxicaria	0.17	2.04	0.00	0.74
137.	Annona squamosa	0.17	2.04	0.00	0.74
	Ficus lyrtica	0.17	2.04	0.01	0.74
	Caryota urens	0.17	2.04	0.00	0.74
140.	Codiaeum variegatum	0.17	2.04	0.00	0.74
141.	Hylocereus undatus	0.17	2.04	0.01	0.74
142.	Gustavia augusta	0.17	2.04	0.01	0.74
143.	Nephelium longana	0.17	2.04	0.00	0.74
144.	Nerium indicum	0.17	2.04	0.01	0.74
145.	Baccaurea motleyana	0.17	2.04	0.01	0.74
146.	Erythrina orientalis	0.17	2.04	0.02	0.74
147.	Vitex negundo	0.17	2.04	0.00	0.74
148.	Phyllunthus acidus	0.17	2.04	0.02	0.74
149.	Nephelium lappaceum	0.17	2.04	0.01	0.74
150.	Brunfelsia pauciflora	0.17	2.04	0.00	0.74

RBA (%) SL No. **Species Name RF** (%) **RD** (%) IVI Swietenia macrophylla 5.62 145.28 7.99 52.97 1. Polyalthia longifolia 96.23 3.32 34.54 2. 4.07 3. Mimusops elengi 3.68 88.68 0.54 30.97 4. Samanea saman 4.26 58.49 15.03 25.93 5. Tectona grandis 3.88 54.72 3.84 20.81 Delonix regia 3.49 50.94 5.77 20.07 6. 7. Cocos nucifera 2.91 54.72 1.47 19.70 8. Albizia richardiana 3.10 43.40 8.52 18.34 Mangifera indica 3.25 16.58 9. 3.10 43.40 10. Artocarpus heterophyllus 2.71 43.40 0.98 15.70 Syagrus romanzoffiana 1.55 37.74 2.21 13.83 11. Ficus virens 2.52 30.19 13.48 12. 7.73 13. *Combretum indicum* 1.55 37.74 0.04 13.11 14. 1.74 33.96 1.84 12.52 Leucaena leucocephala 15. Roystonea regia 1.16 28.30 1.62 10.36 Lagerstroemia speciosa 1.36 26.42 3.20 10.32 16. 17. Azadirachta indica 2.33 26.42 0.54 9.76 1.74 26.42 0.33 9.49 18. *Moringa oleifera* 19. *Codiaeum variegatum* 0.58 26.42 0.02 9.01 20. Barringtonia acutangula 1.16 24.53 1.10 8.93 21. Alstonia scholaris 1.94 22.64 1.82 8.80 22. Livistona chinensis 0.97 24.53 0.04 8.51 1.74 23. Dillenia indica 22.64 0.93 8.44 24. 7.94 Lagerstroemia lancasteri 1.16 22.64 0.03 25. Anthocephalus sinensis 1.55 20.75 0.73 7.68 26. 0.97 20.75 1.19 7.64 Terminalia arjuna 27. Tamarindus indica 1.55 18.87 2.07 7.50 28. *Terminalia catappa* 1.55 18.87 1.41 7.28 29. 1.36 18.87 0.94 7.05 Syzygium cumini Hevea brasiliensis 1.36 15.09 1.89 30. 6.11 31. Bougainvillea glabra 1.16 16.98 0.01 6.05 32. Ziziphus mauritiana 1.16 16.98 0.01 6.05 Ficus bengalensis 3.28 5.88 33. 1.16 13.21 34. Dypsis lutescens 0.58 16.98 0.01 5.86 35. Cordyline fruticosa 0.39 16.98 0.01 5.79 5.23 36. 0.58 15.09 Duranta erecta 0.01 37. Plumeria obtusa 1.16 13.21 0.20 4.86 13.21 0.07 38. Melia azedarach 1.16 4.81 39. 13.21 0.03 Annona squamosa 1.16 4.80 40. Bombax ceiba 0.58 13.21 0.45 4.75 Tabernaemonlana divaricata 0.01 41. 0.78 13.21 4.66 0.56 1.53 4.47 42. Cassia siamea 11.32

Appendix 6. Relative frequency, Relative density, Relative basal area and IVI for all the plant species in roadsides of DSCC

11.32

9.43

0.59

0.77

4.29

3.72

0.97

0.97

43.

44.

Dalbergia sissoo

Chukrasia tabularis

Ficus carica Abroma augusta Borassus flabellifer Carica papaya Averrhoa bilimbi Araucaria columnaris Ficus blanceolata Anacardium occidentale	0.78 0.78 0.58 0.58 0.58 0.58 0.39 0.39	9.43 9.43 9.43 9.43 9.43 9.43	0.58 0.21 0.29 0.03 0.03	3.60 3.47 3.44 3.35
Borassus flabellifer Carica papaya Averrhoa bilimbi Araucaria columnaris Ficus blanceolata Anacardium occidentale	0.58 0.58 0.58 0.39	9.43 9.43 9.43	0.29 0.03	3.44 3.35
Carica papaya Averrhoa bilimbi Araucaria columnaris Ficus blanceolata Anacardium occidentale	0.58 0.58 0.39	9.43 9.43	0.03	3.35
Averrhoa bilimbi Araucaria columnaris Ficus blanceolata Anacardium occidentale	0.58 0.39	9.43		
Araucaria columnaris Ficus blanceolata Anacardium occidentale	0.39		0.02	
Ficus blanceolata Anacardium occidentale			0.05	3.35
Anacardium occidentale	0.30	9.43	0.02	3.28
	0.57	5.66	3.02	3.02
	0.39	7.55	0.77	2.90
Phoenix sylvestris	0.78	7.55	0.18	2.83
Mussaenda erythrophylla	0.39	7.55	0.01	2.65
Gardenia jasminoides	0.39	7.55	0.01	2.65
Aquilaria agallocha	0.58	5.66	1.24	2.49
Citrus grandis	0.58	5.66	0.42	2.22
Couroupita guianensis	0.39	5.66	0.62	2.22
Acacia auriculiformis	0.39	5.66	0.58	2.21
Eucalyptus camaldulensis	0.39	5.66	0.34	2.13
Casuarinas equisetifolia	0.39	5.66	0.35	2.13
- v	0.58	5.66	0.15	2.13
Spondias mombin	0.58	5.66	0.07	2.11
Erythrina orientalis			0.04	2.10
Areca catchu				2.10
				2.09
00				2.09
				2.09
0				2.08
<u> </u>				2.07
1				2.06
· ·				2.04
-				2.03
				2.03
				2.02
				2.02
				2.02
				2.02
				2.02
				1.95
0				0.83
				0.85
*				0.70
				0.71
				0.71
				0.71
6				0.70
				0.70
				0.70
0				
				0.69
				0.69
Libiscus rosa-sinensis Lecoma stans	0.19	1.89	0.00	0.69
	Citrus grandis Couroupita guianensis Couroupita guianensis Caccia auriculiformis Cucalyptus camaldulensis Casuarinas equisetifolia Aichelia champaca Spondias mombin Crythrina orientalis Verca catchu Cmblica officinalis Verrhoa carambola Aesua ferrea Caesalpinia pulcherrima Vertocarpus lakoocha Vylia dolabriformis Cassia fistula Psidium guajava Cannea coromandelica Vilamanda cathartica Hibiscus rosa-sinensis Carissa carandas Duisqualis indica Callistemon citrinus Cosa rubiginosa Cerminalia bellerica Creblus asper Vegle marmelos Vilizia lebbek Ceronia limonia Aillingtonia hortensis Diospyros peregrina Aadhuca longifolia Bauhinia variegata Verium indicum Aalvaviscus arboreus Hibiscus rosa-sinensis	Citrus grandis0.58Couroupita guianensis0.39Cacia auriculiformis0.39Cacia auriculiformis0.39Cacalyptus camaldulensis0.39Casuarinas equisetifolia0.39Casuarinas equisetifolia0.39Aichelia champaca0.58Condias mombin0.58Crythrina orientalis0.58Crythrina orientalis0.58Creca catchu0.58Casua ferrea0.58Casua ferrea0.58Cassalpinia pulcherrima0.58Crocarpus lakoocha0.39Cassia fistula0.39Cassia fistula0.39Cassia fistula0.39Carissa carandas0.39Carissa carandas0.39Carissa carandas0.39Callistemon citrinus0.19Cassia fistula bellerica0.58Creminalia bellerica0.58Crentialia bellerica0.58Crentialia bellerica0.19Cassia limonia0.19Madhuca longifolia0.19Matuca longifolia0.19Matuca longifolia0.19Matura longifolia0.19Matura longifolia0.19Matura locus carboreus0.19Matura locus carboreus0.19	Citrus grandis 0.58 5.66 Couroupita guianensis 0.39 5.66 Coucalyptus camaldulensis 0.39 5.66 Cacaia auriculiformis 0.39 5.66 Cacaia auriculiformis 0.39 5.66 Casuarinas equisetifolia 0.39 5.66 Casuarinas equisetifolia 0.39 5.66 Casuarinas equisetifolia 0.39 5.66 Casuarinas equisetifolia 0.58 5.66 Crythrina orientalis 0.58 5.66 Crythrina orientalis 0.58 5.66 Crythrina orientalis 0.58 5.66 Crythrina carambola 0.58 5.66 Caesalpinia pulcherrima 0.58 5.66 Caesalpinia pulcherrima 0.39 5.66 Casia fistula 0.39 5.66 Casia fistula 0.39 5.66 Casia fistula 0.39 5.66 Carissa carandas 0.39 5.66 Calise coromandelica 0.39 5.66 Calistemon citrinus 0.19 5.66 Calistemon citrinus 0.19 5.66 Calistemon citrinus 0.19 1.89 Millingtonia hortensis 0.19 1.89 Millingtonia hortensis 0.19 1.89 Madhuca longifolia 0.19 1.89 Maluna variegata 0.19 1.89 Maluna variegata 0.19 1.89 Maluviscus arboreus 0.19 1.89	Titrus grandis 0.58 5.66 0.42 Couroupita guianensis 0.39 5.66 0.62 Cacaia auriculiformis 0.39 5.66 0.34 Cauariputs canaldulensis 0.39 5.66 0.34 Cauarinas equisetifolia 0.39 5.66 0.35 Calchelia champaca 0.58 5.66 0.015 Condias mombin 0.58 5.66 0.017 Crythrina orientalis 0.58 5.66 0.01 Veercha carambola 0.39 5.66 0.01 Veercha carambola 0.39 5.66 0.01 Cassia fistula 0.39 5.66 0.01 Cassia fistula 0.39 5.66 0.00

SL No.	Local Name	Scientific name	Family
1.	Spider Lily	Hymenocallis littoralis	Liliaceae
2.	Purple Heart	Tradescantia pallida	Commelinaceae
3.	Elachi	Elettaria cardamomum	Zingiberaceae
4.	Money Plant	Epipremnum aureum	Araceae
5.	Snake Plant	Sansevieria trifasciata	Asparagaceae
6.	Day Lily	Hemerocallis lilioasphodelus	Liliaceae
7.	MorogJhuti	Celosia argentea	Amaranthaceae
8.	Morogful	Celosia plumose	Amaranthaceae
9.	Kalomegh	Andrographis paniculata	Acanthaceae
10.	salvia	Salvia officinalis	Lamiaceae
11.	Panthopadop	Ravenala madagascariensis	Musaceae
12.	Nayantara	Catharanthus roseus	Apocynaceae
13.	Botamful	Gomphrena globosa	Amaranthaceae
14.	Tulshi	Ocimum tenuiflorum	Lamiaceae
15.	Dopati	Impatiens balsamina	Balsaminaceae
16.	Fruit Salad	Monstera deliciosa	Araceae
17.	Lantana	Lantana Camara	Verbenaceae
18.	Sandhyamaloti	Mirabilis jalapa	Nyctaginaceae
19.	Kolaboti	Canna indica	Cannaceae
20.	Pink Swamp Mellow	Abelmoschus moschatus	Malvaceae
21.	Panika	Cuphea hyssopifolia	Lythraceae
22.	Cosmos	Cosmos sulphureus	Asteraceae
23.	Hatishur	Heliotropium indicum	Boraginaceae
24.	BoroHatishur	Acalypha hispida Burm	Euphorbiaceae
25.	Peacocok ginger	Kaempferia elegans	Zingiberaceae
26.	Goldenstar	Chrysogonum virginianum	Asteraceae
27.	Oporajita	Clitoria ternatea	Fabaceae
28.	Madhobilota	Hiptage madablota	Malpighiaceae
29.	Jhumkolota	Passiflora laurifolia	Passifloraceae
30.	Neelmoni lota	Petrea volubilis	Verbenaceae
31.	Konoklota	Pyrostegia venusta	Bignoniaceae
32.	Trumpet flower	Solandra grandiflora	Solanaceae
33.	Spider Plant	Chlorophytum comosum	Asparagaceae
34.	Aster	Aster novi-belgii	Compositae
35.	Coleus	Coleus blumeri	Labiotae
36.	Baharikocu	Caladium bicolor	Araceae
37.	Shotomuli	Asparagus racemosus	Asparagaceae
38.	Thankkuni	Centella asiatica	Apiaceae
39.	Bon Morich	Ammannia baccifera	Lythraceae
40.	Shorpogondha	Rauvolfia serpentina	Apocynaceae
41.	Shornolota	Cuscuta Reflexa	Convolvulaceae
42.	Cairo Morning Glory	Ipomoea cairica	Convolvulaceae
43.	Golden Garnia	Gardenia carinata	Rubiaceae
44.	Devil weed	Chromolaena odorata	Asteraceae
45.	Bathua	Chenopodium album	Amaranthaceae
46.	Bishkataly	Polygonum hydropiper	Polygonaceae
47.	Amrul shak	Oxalis europea	Oxalidaceae

Appendix 7. List of 126 herb species with scientific name and family

48.	Girakata	Spilanthes acmella	Asteraceae
49.	Lazzabati	Mimosa pudica	Fabaceae
50.	Shialkata	Argemone mexicana	Papaveraceae
51.	Keshraj	Eclipta alba Hessk.	Compositae
52.	Potpoti	Ruellia tuberosa	Acanthaceae
53.	Gobura	Anisomeles indica	Lamiaceae
54.	bon okara	Urena lobata	Malvaceae
55.	JonakiFul	Anagallis arvensis	Primulaceae
56.	Patenga	Trichosanthes cucumerina wild.	Cucurbitaceae
57.	Shetdron	Leucus cephalot	Lamiaceae
58.	Hajarmoni	Phyllanthus urinaria.	Euphorbiaceae
59.	Bon dhonia	Coparia dulcis	Scrophulariaceae
60.	Chorakata	Chrysopogon aciculatus	Poaceae
61.	Grass pea,	Lathyrus sativus	Fabaceae
62.	Petunia	Petunia hybrida	Solanaceae
63.	Motimunda	Taccachantrieri	Dioscoreaceae
64.	Goldenwave	Coreopsis tinctoria	Asteraceae
65.	Rajanigondha	Polianthes tuberosa	Agavaceae
66.	Kunjolota	Ipomoea quamoclit	Convolvulaceae
67.	Tridhara	Tridax procumbens	Asteraceae
68.	Biralnokha	CapparisSpinosa /	Capparidaceae
69.	Telakucha	Cephalandra indica	Cucurbitaceae
70.	Boro shama	Echinochloa crussgalli	Poaceae
71.	Durba	Cynodon dactylon	Poaceae
72.	Chapra	Elusine indica	Poaceae
73.	Angulee ghas	Digitaria sanguinalis	Poaceae
74.	Khude angulee	Digitaria ischaemum	Poaceae
75.	Gitla ghas	Paspalum distichum	Poaceae
76.	Shial leja	Setaria glauca	Poaceae
77.	Kakpaya	Dactyloctenium aegyptium	Poaceae
78.	Carpet grass	Axonopus compressus	Poaceae
79.	Bon cheena	Panicum repens	Poaceae
80.	Chira ghash	Eragrostis unioloides	Poaceae
81.	Moyurleja	Leptochola panicea	Gramineae
82.	Busket grass	Oplisma burmaniaii	Poaceae
83.	Nol khagra	Phragmites karka	Poaceae
84.	Mutha ghas	Cyperus rotundus	Cyperaceae
85.	Umbrella ghas	Cyperus difformis	Cyperaceae
86.	Chatidhora	Cyperus compressus	Cyperaceae
87.	Nakfuli	Cyperus michelianus	Cyperaceae
88.	Keshuti	Eclipta prostrata	Asteraceae
89.	Bugra ghas	Veronia patula	Asteraceae
90.	Jirakata	Spilanthes acmella	Asteraceae
91.	Mikania lota	Mikania cordata	Asteraceae
92.	Boro dudhia	Euphorbia hirta	Euphorbiaceae
93.	Kanai bashi	Commelina benghalensis	Commelinaceae
94.	Kanainala	Cyanotis axillaris	Commelinaceae
95.	Arich	Cassia tora	Caesalpiniaceae
96.	Bonno shorisa	Rorippa indica	Brassicaceae
97.	Peperomia	Peperomia caperata	Piperaceae
98.	Tita begun	Solanum nigrum	Solanaceae

99.	Dhutura	Datura metel	Solanaceae
100.	Khetpapri	Lindernia procumbens	Linderniaceae
101.	Fern	Dryoyteris filix-mas	Dryopteridaceae
102.	Roktodron	Leonurus sibiricus	Lamiaceae
103.	Calendula	Calendula officinalis	Asteraceae
104.	Dianthus	Dianthus caryophyllus	Caryophyllaceae
105.	Portulaka	Portulaca grandiflora	Portulacaceae
106.	Shotomuli	Asparagus officinalis	Liliaceae
107.	Begonia	Begonia bicolor	Begoniaceae
108.	Anthurium	Anthurium crystallinum	Araceae
109.	Alocasia	Alocasia portei	Araceae
110.	Zebra plant	Calathea zebrina	Marantaceae
111.	Bicolor	Excoecaria bicolor	Euphorbiaceae
112.	Rye grass	Lolium pratense	Gramineae
113.	China grass	Poa pratensis	Gramineae
114.	Rybby grass	Tricholaena rosea	Gramineae
115.	Lemon grass	Cymbpopgon citratus	Gramineae
116.	Bokful	Vigna unguiculata	Fabaceae
117.	Katanotey	Amaranthus Spinosus	Amaranthaceae
118.	Notiyasag.	Amaranthus Blitum	Amaranthaceae
119.	Ban tulsi	Salvia plebeja	Lamiaceae
120.	Chondromollika	Chrysanthemum coronarium	Asteraceae
121.	Ghagra	Xanthium indicum	Asteraceae
122.	Bara bans	Bambusa balcooa	Poaceae
123.	Mitinga bans	Bambusa tullda	Poaceae
124.	Kata bans	Bambusa arundinacea	Poaceae
125.	Banana	Musa acuminata colla	Musaceae
126.	Bashok	Adhatoda vasica	Acanthaceae