INFLUENCE OF LOWER SEED RA.TE ON THE PERFORMANCE OF MUNGBEAN AND BLACKGRAM

BY
 MOHAMMAD ASIF IQBAL

REG. No. : 00938

A Thesis
Submitted to the Faculty of Agriculture
Sher-e-Bangla Agricultural University, Dhaka
in partial fulffiment of the requirements
for the degree
of

MASTER OF SCIENCE (MS)

IN

AGRONOMY

SEMESTER: JANUA:Y-JUNE, 2008

APPROVED BY:

Prof. Dr. Parimal Kanti Biswas
Department of Agronomy
SAU, Dhaka
Supervisor

Prof. Dr. Md. Jafar Ullah
Chairman
Examination Committee

DEPARTMENT OF AGRONOMY
Sher-e-Bangla Agricultural University
Sher-e-Bangla Nagar, Dhaka-1207
Memo No: SAU/Agronomy/(09)/
Date :

CERTIFICATE

This is to certify that the thesis entitled "Influence of Lower Seed Rate on the Performance of Mungbean and Blackgram" submitted to the Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE in AGRONOMY, embodies the result of a piece of bonafide research work carried out by Mohammad Asif Iqbal, Registration number: 00938 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that any help or source of information, received during the course of this investigation has duly been acknowledged.

Dated: 26112108
Dhaka, Bangladesh

Dr. Parimal Kanti Biswas
Professor
Department of Agronomy Sher-e-Bangla Agricultural University Dhaka-1207

ACKNOWLEDGEMENTS

All praises are devoted to Almighty Allaf, the supreme authority of this universe, who enables the autfor to complete the research work and submit the thesis for the degree of Master of Science (M.S.) in Agronomy.

Guidance, help and co-operation fave received from several persons during the tenure of the study, for the cause of which the author is grateful to all of them. Althoughit is not possible to mention every one by name, it will be an act of ungratefulness if some names are not mentioned fiere.

The author would like to acknowledge the untining inspiration, encouragement and invaluable guidance provided by fis respected teacher and supervisor Professor Dr. Parimal Kanti Biswas, Department of Agronon:y Sher-e-Bangla Agricultural University (SAV), Dhaka. His constructive criticisms, continuous supervision and valuable suggestions were fielpful in completing the researili and writing up of the manuscript.

The autfior would fike to express fis fieartiest a_{i} preciation, ever indebtedness and deep sense of gratitude to his co-supervisor Professor Dr. Md. Jafar VMaf, Department of Agronomy Sfier-e-Bangla Agricultural University (SAV) for fis utmost cooperation, constructive suggestion to conduct the researcii work as well as preparation of the manuscript of the thesis.

The autfior wisties to express fiis sincere respect and profound appreciation to tive departmental Chairman Professor Dr. Md. Jafar Vllaf and other teacfiers for their valuable teacfiing and providing the facifities to conduct the experiment and sympatheti: consideration in connection witf the study.

Heartiest thanks and gratitude are due to the ojficiuls of Farm Division, Shier-e-Bangla Agricultural University for their support to conduct the researcfi.

The autfior feels proud to express fiis deepest and endless gratitude to all of his course mates specially Sumona, Sumit, Kanak, Nifir and IqGal to cooperate and help during taking data from the field and to take care of fiis experimental plot time to time. Very special thanks to Sumona and Sumit to ascending fiis thesis paper property and for being a great support to fiis all tfie tine.

Finalfy, the author is very muchigrateful to fier ieloved father, mother, sister and 6rother for their sacrifice, inspiration, encouragement, endless tove and continuous blessing for educating fiis to the postgraduate level.

May Allah protect them all.

The Author
December, 2008

INFLUENCE OF LOWER SEED RATE ON THE PERFORMANCE OF MUNGBEAN AND BLACKGRAM

Abstract

The experiment was conducted in the Farm of Sher-e-Bangla Agricultural University, Dhaka, during the period from March to May 2007 to study the influence of lower seed rate on the growth and yield of mungbean and blackgram. The experiment consists of two factors. Factor A: Crops BARI mung 6 and BARi mash 1; Factor B: Seed rate, 30 kg seeds ha^{-1} (recommended dose), 27 kg seeds ha^{-1} (10% less than recommended dose), 24 kg seeds ha^{-1} (20% less than recommended dosc), 21 kg seeds ha^{-1} (30% less than recommended dose) and 18 kg seeds ha^{-1} (40% less than recommended dose). The two factors experiment was laid out in Split plot Design with three replications. At 20, 30, 40, 50 DAS and at harvest the tallest plant $(18.30 \mathrm{~cm}, 35.70 \mathrm{~cm}, 42.74 \mathrm{~cm}, 55.69 \mathrm{~cm}$ and 67.96 cm), maximum number of pods per plant (20.24), maximum pod length (6.98 cm), maximum seed yield per hectare (1.13 ton) and maximum stover yield per hectare (1.39 ton) was recorded from blackgram, while the shortest plant ($15.64 \mathrm{~cm}, 30.45 \mathrm{~cm}, 36.51$ $\mathrm{cm}, 50.91 \mathrm{~cm}$ and 61.55 cm), minimum number of pods per plant (18.10), minimum pod length (6.16 cm), minimum seed yield per hectare (1.01 ton) and minimum stover yield per hectare (1.24 ton) was found from mungbean. At $20,30,40,50 \mathrm{DAS}$ and at harvest the tallest plant ($18.61 \mathrm{~cm}, 35.33 \mathrm{~cm}, 42.42 \mathrm{~cm}, 57.05 \mathrm{~cm}$ and 69.59 cm), maximum number of pods per plant (20.87), maximum pod length (6.95 cm), maximum seed yield per hectare (1.20 ton) and maximum stover yield per hectare (1.49 ton) was recorded from 2 kg seeds ha ${ }^{-1}$ while, the shortest plant $(16.03 \mathrm{~cm}, 31.40 \mathrm{~cm}, 37.53 \mathrm{~cm}, 49.81 \mathrm{~cm}$ and 60.93 cm), minimum number of pods per plant (17.53), minimum pod length (6.04 cm), minimum seed yield per hectare (0.91 ton) and minimum stover yield (1.12 ton) was found from S_{5}. At $20,30,40,50$ DAS and harve 3 the tallest plant $(20.62 \mathrm{~cm}, 38.15 \mathrm{~cm}$, $45.56 \mathrm{~cm}, 60.29 \mathrm{~cm}$ and 73.65 cm), maximum number of pods per plant (22.88), maximum pod length (7.39 cm), maximum seed yield per hectare (1.24 ton) and maximum stover yield per hectare (1.55 ton) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$, where as the shortest plant $(13.40 \mathrm{~cm}, 26.60 \mathrm{~cm}, 32.14 \mathrm{~cm}, 44.57 \mathrm{~cm}, 53.18 \mathrm{~cm}$), minimum number of pods per plant (14.17), minimum pod length (5.36 cm), minimum seed yield per hectare (0.81 ton) and minimum stover yield (1.01 ton) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$.

TABLE OF CONTENTS

CHAPTER TITLE Page
ACKNOWLEDGEMENTS i
ABSTRACT iii
LIST OF CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vi
LIST OF APPENDICES vii
1 INTRODUCTION 01
2 REVIEW OF LITERATURE 05
2.1 Yield contributing characters and yield 05
2.2 Effect of seed rate on yield contributing characters and yield 06 of mungbean and blackgram
2.3 Combined effect of cultivar and plant population 11
3 MATERIALS AND METHODS 16
3.1 Experimental Site 16
3.2 Soil 16
3.3 Climate 17
3.4 Planting materials 17
3.5 Land preparation 18
3.6 Fertilizer application 18
3.7 Treatment of the experiment 18
3.8 Experimental design and layout. 19
3.9 Sowing of seeds in the field 19
3.10 Intercultural operations 20
3.11 Crop sampling and data collection 20
CHAPTER TITLE Page
3.12 Harvest and post harvest operations 22
3.13 Data collection 22
3.14 Procedure of data collection 22
3.15 Statistical analysis 25
4 RESULTS AND DISCUSSION 26
4.1 Plant height 26
4.2 Number of leaves per plant 30
4.3 Number of nodules per plant 35
4.4 Number of plant population $/ \mathrm{m}^{2}$ 38
4.5 Number of pods per plant 41
4.6 Pod length 42
4.7 Number of seeds per pod 43
4.8 Weight of thousand seeds 44
4.9 Seed yield 47
4.10 Stover yield 48
4.11 Harvest index 49
5 SUMMARY AND CONCLUSION 50
6 REFERENCES 54
APPENDICES 63

LIST OF TABLES

Title Page
Table 1. Interaction effec: of seed rate on plant height of mungbean and 29 blackgram crops
Table 2. Interaction effect of sced rate on number of leaves per plant of 34 mungbean and blackgram crops
Table 3. Effect of seed rate on number of plant population per m^{2} and 39 yield contributing characters of mungbean and blackgram crops
Table 4. Interaction effect of seed rate on number of plant population 40 per m^{2} and yield contributing characters of mungbean and blackgram crops
Table 5. Effect of seed rate on yield contributing characters and yield 45 of mungbean and blackgram crops
Table 6. Interaction effect of seed rate on yield contributing characters 46 and yield of mungbean and blackgram crops
LIST OF FIGURES
Title Page
Figure 1. Layout of the experimental plot 21
Figure 2. Plant height for mungbean and blackgram crops 27
Figure 3. Effect of differen: seed rate on plant height of mungbean and 27 blackgram
Figure 4. Number of leaves per plant for mungbean and blackgram crops 32
Figure 5. Effect of different seed rate on number of leaves per plant of 32 mungbean and blackgram
Figure 6. umber of nodules plant-1 for mungbean and blackgram crops 36(Lsd0. $05=1.213$)
Figure 7. Effect of different seed rate on number of nodule plant-1of 36 mungbean and blackgram (Lsd0.05 $=1.728$)
Figure 8. Interaction effect of different seec rate on number of nodule 37 plant-lof mungbean and blackgran. $(\operatorname{Lsd} 0.05=2.056)$

LIST OF APPENDICES

Title

Appendix I. Experimental location on the map of Agro-ecological 63 Zones of Bangladesh
Appendix II. The mechanical and chemical characteristics of soil of 64 the experimental site as observed prior to examination ($0-15 \mathrm{~cm}$ depth)
Appendix III. Monthly recordes of temperature and rainfall of the 65 experimental site during the period from April 2007 to June 2007
Appendix IV. Analysis of variance of the data on plant height as 66 influenced by different seed rates of mungbean and blackgram
Appendix V. Analysis of variance of the data on number of leaves per 66 plant as influenced by different seed rates of mungbean and blackgram
Appendix VI. Analysis of variance of the data on number of flowers per 67 plant, number of pods per plant, pod length and number of seeds per pod as influenced by different seed rates of mungbean and blackgram
Appendix VII. Analysis of variance of the data on 1000 -seed weight, 67 seed yield, harvest index and number of nodule per plant as influenced by different seed rates of mungbean and blackgram

Chapter 1 Introduction

Chapter-1

INTRODUCTION

Bangladesh grows various types of pulse crops namely mungbean, blackgram, grass pea, lentil. chickpea, fieldpea and cowpea which are important for cheapest source of easily digestible dietary protein. Pulse protein is rich in amino acids like isoleucine, leucine, lysine, valine etc. According to FAO (1999) a minimum intake of pulse by a human should be 80 g per head per day, whereas it is only 14.19 g in Bangladesh (BBS, 2006). This is because of the fact that national production of the pulses is not adequate to meet the national demand.

Among the pulse crops, mungbean (Vigna raciata L.) is one of the most important pulse crops in Bangladesh. It has good digestibility, flavor, and high protein content. The variety BARImung6 yielded higher and contains 47.3\% carbohydrates, 20.93% protein, 10% moisture, 4% mineral and 3% vitamins (Khan, 1981). In Bangladesh mungbean ranks third in acreage and production but ranks first in consumer choice. Blackgram (Vigna mungo L.) is another most important pulse in Bangladesh with good digestibility, flavor, and high protein content. Blackgram grain contains 47.3% carbohydrates, 25.05% protein, 10% moisture, 4% mineral and 3\% vitamins (Kaul, 1982). Mungbean and blackgram are potentially useful in improving cropping pattern as the crops can be grown as a catch crop due to its rapid growth and early maturing characteristics. The crops can also fix atmospheric nitrogen through the symbiotic relationship between the host roots and soil bacteria and thus improves soil fertility. It may play an important role to
supplement protein in the ctreal-based low-protein diet of the people of Bangladesh, but the acreage and production of this crop are steadily declining (BBS, 2006). However, the crops are the least cared crops.

The green plants of mungbean and blackgram can also be used as animal feed and the residues of these crops can be used as green manure. Being a short duration crop it fits well into the intensive cropping system (Ahmed et al., 1978). Thes: crops are cultivated with minimum land preparation and without fertilizer application and insect, diseases or weed control. All these factors are responsible for low yield of mungbean and blackgram. Kharif-I especially in dry season is not favorable for mungbean germination. Kharif-II period is occupied by T-aman. Cultivation of high yielding varieties of wheat and winter rice has occupied considerable land suitable for mungbean cultivation.

Seed rate influences the yield and yield contributing characteristics (Singh and Singh, 1987). Higher than recommended seed rate generally increases plant population resulting intra crop competition thereby affecting the yield. On the other hand, lower seed rate may reduce the yield drastically as the grain yield is positively correlated with plant population (Vukadinovic et al., 1986). In the development of appropriate management practices for mungbean and blackgram, plant population plays an imnortant role. Plant population is one of the most important yield contributing factors which can be manipulated to maximize yield. In lower plant population, individual plant periormance is better than that of higher
plant population but within tolerable limit higher plant population produces higher yield ha ${ }^{-1}$ (Shukla and Dixit, 1996).

Optimum plant population ensures normal plant growth because of efficient utilization of moisture, light, space and nutrients, thus increases the yield of crop. Pieces of broken or damaged seed one half the original size or less, straw. Chaffs, stone, dust, nematode gall, dead or living unts are also mixed with the seed that reduces the optimum population and hence it is also considered by percent with the seed rate calculation (ISTA, 1985). It is necessary to test how much contamination is acceptable in the form of other seed and inert matter without sacrifice yield (Wignell, 1983).

Mungbean yield was affected by population density and they found that 33 plants m^{-2} was optimurn for highest yield during Kharif-1 season which was identical with 29 plants m^{-2} meter contributed by higher plant population. The 25 plants m^{-2} failed to give higher yield though it produced higher number of pods/plant and seed weight. Mungbean grown at very high population failed to produce yield because of high rate of mortality. The performance of blackgram grown in different mixed and intercrop combinations under variable seed rate ratio and planting geometry (Hamid, 1989).

Considering the above circumstances, in optimum plant population of these two crops the present investigation has been undertaken to determine the effect of different seed rate with the following objectives:
i. To identify the impact of lower seed rate that effect in plant population, growth, yield attributes and yield of mungbean and blackgram.
ii. To compare the field performance of mungbean and blackgram.
iii. To determine the interaction effect between seed rate and crop of mungbean and blackgram.

Chapter 2 Review of literature

Chapter-II

REVIEW OF LITERATURE

Mungbean and blackgram are the two most ir portant pulse crops in Bangladesh and as well as many countries of the world. These crops have conventional less concentration by the researchers on various aspects because normally it grows without less care or management practices. For that a very few studies on the related growth, yield and development of these crops have been carried out in our country as well as many other countries of the world. So the research work so far done in Bangladesh is not adequate and conclusive. Nevertheless, some of the important and informative works and research findings related to the seed rate on the growth and yield of mungbean and blackgram so far been done at home and abroad have been reviewed under the following headings-

2.1 Yield contributing characters and yield

Tickoo et al. (2006) carried out an experiment with mungbean cultivars Pusa 105 and Pusa Vishal sown at 22.5 and 30 cm spacing and supplied with $36-46$ and 58$46 \mathrm{~kg} \mathrm{NP} \mathrm{ha}^{-1}$ in a field experiment conducted in Delhi, India during the kharif season of 2000. Cultivar Pusa Vishal recorded higher biological and grain yield (3.66 and $1.63 \mathrm{t} / \mathrm{ha}$, respectively) compared to cv . Pusa 105. NP rates had no significant effects on both the biological and grain yield of the crop. Row spacing, at 22.5 cm resulted in higher grain yields in both crops than 30 cm .

A field experiment was conducted by Manprest et al. (2004) in Ludhiana, Punjab, India, during summer 2000 to investigate the response of mungbean genotypes (SML 134, SML 357 and SML 668) to P application ($0,20,40$ and $60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$) under irrigated conditions. Yield attributes such as number of branches per plant and pods per plant were significantly higher in SML 357 and SML 134, whereas pod length and 100 -seed weight were higher in SML 668 , which accounted for higher grain yield in this cultivar compared to SML 134 but was at par with SML 357. The straw yield showed the reverse trend with significantly higher value for SML 134, thus lowering the harvest index significantly compared to SML 668 and SML 357.

Satish et al. (2003) conducted an experiment in Haryana, India in 1999 and 2000 to investigate the response of mungbean cultivars Asha, MH 97-2, MH 85-111 and K 851 to different P levels $\left(0,20,40\right.$ and $\left.60 \mathrm{~kg} \mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}\right)$. Results revealed that the highest dry matter content in the leaves, stems and pods was obtained in Asha and MH 97-2. MH 97-2 and Asha produced significantly more number of pods and branches/plant compared to MH 85-111 and K 851 .

2.2 Effect of seed rate on yield contributing characters and yield of mungbean and blackgram

Tickoo et al. (2006) carried out an experiment on mungbean cultivars Pusa 105 and Pusa Vishal were sown at 225 and 30 m spacing and was supplied with $36-46$ and $58-46 \mathrm{~kg} \mathrm{NP} / \mathrm{ha}$ in a field experiment conducted in Delhi, India during the kharif season of 2000. Cultivar Pusa Vishal recorded higher biological and grain yield
(3.66 and 1.63 tha, respectively) compared to cv . Pusa 105 . Differences in the values of the parameters examined.
. Plant population can play an important role on the growth and yield of mungbean cultivar. In Bangladesh condition it was found that a plant density of $30 \times 10 \mathrm{~cm}$ resulted in the highest seed yield compared to 20×20 and $40 \times 30 \mathrm{~cm}$ (Sarkar et al., 2004).

In India, the effect of plant density on the growth and yield of mungbean genotypes was documented in a field study and observed that higher number of branches and pods per plant :vere at low plant populations compared to high plant populations, while leaf area index was higher at high populations compared to low populations. Seed yield was highest at 3.33 lakh ha ${ }^{-2}$ (Sekhon et al., 2002).

Hasanuzzaman (2001) conducted a field experiment in Bangladesh with mungbean and found that number of branches plant ${ }^{-1}$, pods plant ${ }^{-1}$, seed yield plant ${ }^{-1}$ and 1000 seed weight were highest in lower plant population.

In an experiment conducted by Miranda et al. (1997) in Brazil (using Vigna radiata $c v$. Ouro verde and different plant densities of $100,000,200,000,300,000,400,000$ or 500,000 plants $h a^{-1}$. They reported that average number of seeds pod ${ }^{-1}$ and pod length decreased with increasing density. A stand density of 300,000 plants ha ${ }^{-1}$ gave the highest average seed yields of $0.94 \mathrm{t} \mathrm{ha}^{-1}$.

In an experiment EI-Habbasha et al. (1996) reported that increasing plant density increased plant height but decreased branch and leaf number plant ${ }^{-1}$, dry weight of shoots, pod yield plant ${ }^{-1}$ and number of pods plant ${ }^{-1}$ of mungbean.

Tomar and Tiwari (1996) conducted a field trial in the season of 1983 and 1984 to study the response of green gram genotypes to plant density. They found that mean yield increased with increasing plant density up to 800,000 plants ha ${ }^{-1}$.

At Joydebpur, Haque (1995) carried out a field trial on Vigna radiata cultivar BM7703 using populations of $250000,333333,400000$ or 500000 plants ha ${ }^{-1}$ and found that 333333 plants ha ${ }^{-1}$ (approximately 33 plants m^{-2}) gave the highest seed yield.

Mimber (1993) carried out a field trial on Vigna radiata cultivar Walet using 400000,600000 or 800000 plant populations ha^{-1} and found that yield increased with increasing plant population.

In Thailand, Pookpakdi and Pataradilok (1993) investigated the response of mungbean genotypes to plant population densities sown at $200,000,400,000$ and $800,000 \mathrm{ha}^{-1}$. They observed that yield was generally increased with increasing plant density, while pod number plant ${ }^{-1}$ decreased with increasing density.

In a field experiment in 1983-84, Tomar et al. (1993) using 4 cultivars of mungbean at populations of $400,000,600,000,800,000$ or $1,000,000$ plants ha ${ }^{-1}$ found that a population of $1,000,000$ plants ha^{-1} (approximately 100 plants m^{-2}) gave higher yield than any other plant populations.

Singh et al. (1991) carried out a field experiment to study the effect of spacing and seed rate on yield of green gram. They reported that plant population increased with increasing seed rate and highest seed yield of 0.55 t ha was obtained from $32 \mathrm{~kg} / \mathrm{ha}$ seed rates.

Working with 3 plant population densities of tnungbean, Trung and Yoshida (1985) found that increasing DM production. LAI, seed yield and pod number per unit area but it had little effect on average number or weight of seeds pod ${ }^{-1}$ or 1000 seed weight.

Singh and Singh (1990) conducted a field trial in the summer on silty clay loam soil at Pantnagar, where mungbeans cv. Pusa Baishakhi, Type-1, ML 26/10/3 and UMP 79-1-2 were sown at populations of $400,000,500,000$ or 600,000 plants ha^{-1} in $1: 1$ (square), 1:2 (rectangular) or 1:4 (deep rectangular) sowing patterns. They reported that plant population did not affect seed yield.

Singh and Singh (1988) reported that cultivation of 4 mungbean (Vigna radiata) cultivars at a density of $400,000,500,000$ or 600,000 plants ha ${ }^{-1}$ gave similar average seed yields of 1.13-15 $\mathrm{tha}{ }^{-1}$.

A high plant population $\left(400,000\right.$ plants $\left.\mathrm{ha}^{-1}\right)$ as compared to low plant population (200,000 plants ha ${ }^{-1}$) produced maximum seed yield in trials of Singh and Malhotra (1983) and Maheshwari et al. (1974) in North India. They reported that maximum bean yield was obtained from a population of 300,000 to 400,000 plants ha^{-1}.

Brathwaite (1982) noticed that increasing crop density decreased pod size and number of branches plant ${ }^{-1}$, but days to flowering, maturity, plant height and pod quality remained unaffected. He recommendec crop density of 148,000 plants ha ${ }^{-1}$.

Muesca and Oria (1981) observed that the number of days to flowering of mungbean was not affected by plant density. With a dense stand (25 plants m^{-2}) plant height was the highest $(68 \mathrm{~cm})$ and pod set was the greatest $\left(484 \operatorname{plot}^{-1}\right)$. Seed yield was the highest $\left(369 \mathrm{~g} \mathrm{plot}^{-1}\right)$ at the lowest density of 10 plants m^{-2}.

Hoq and Hossain (1981) in an experiment observed significant effect of plant density on the height of mungbean. It has been observed from a large number of trials conducted on grain legumes in India that they respond favorably to increased plant population from 100,000 to 500,000 plants ha ${ }^{-1}$ depending upon the growth conditions (Saini and Das, 1979).

Beech and Wood (1978) conducted several studies and reported a higher plant population up to 450,000 plants ha^{-1} gave higher yields in mungbean under good management conditions. Cagampang et al. (1977) determined the optimum plant population of mungbean in the range of 300,000 to 400,000 plants ha^{-1} in the wet season and 400,000 to 500,000 plants ha ${ }^{-1}$ in the dry season.

Tsiung (1978) reported that in mungbean the harvest index declined before the maximum grain yield was attained, usually from the lowest density. He further reported that there was an increase in harvest index up to density giving the higher
grain yield. All studies were consistent in showing a progressive decline in harvest index at densities above the maximum grain yield.

Milthorpe and Moorby (1974) and Okigbo (1979) observed that, the crop growth rate increased with the age of plant. Williams (1967) noticed that in the carly stage of growth closer spacings showed higher crop growth rates and yield but in late i stages all except the widest spacing gave constant yield in mungbean. The higher LAI and crop growth rates were obtained at higher density than at lower plant density (Sprent et al., 1977).

2.3 Combined effect of cultivar and plant pooulation

SSarkar et al. (2004) conducted on experiment in Bangladesh with five mungbean cultivars (BARIMung-2, BARIMung-3, EARIMung-4, BARIMung-5 and BINAMung-2) and three plant densities ($20 \times 20,30 \times 10$ and $40 \times 30 \mathrm{~cm}$) and found that BINAMung-2 had the highest number of branches per plant at a spacing of $40 \times 30 \mathrm{~cm}$. They recorded the highest number of pods per plant in BARIMung3 at a spacing of $30 \times 10 \mathrm{~cm}$. Pod length was greatest in BARIMung- 5 at a density of $20 \times 20 \mathrm{~cm}$. The highest 1000 -seed weight was obtained by BARIMung- 5 at densities of 20×20 and $30 \times 10 \mathrm{~cm}$. At a density of $30 \times 10 \mathrm{~cm}$ BARIMung-2 produced the highest seed yield and harvest index. The lowest seed yield and harvest index were recorded for BARIMung -3 at a density of $40 \times 30 \mathrm{~cm}$.

Sekhon et al. (2002) conducted field experiments in India with three plant populations ($3.33,2.22$ and 167 lakh $_{h^{-1}}$) to cetermine the effect of plant density on the growth and yield of mungbean genotypes. They obseived that among the
genotypes, ML 613 was the best in terms of yield and yield component values at a higher population of 3.33 lakh ha ${ }^{-1}$.

Borah (1994) conducted a field experiment to study the performance of green gram genotypes under different seed rates (sown at 20,30 and $35 \mathrm{~kg} \mathrm{ha}^{-1}$) during summer season. He found that seed yield increased consistently with increase in seed rate.

Thakuria and Saharia (1990) conducted a field trial with two green gram cultivars grown at 222,000 and 330,000 plants $h a^{-1}$ and obtained average seed yields of 19 and $680 \mathrm{~kg} \mathrm{ha}^{-1}$, respectively.

Sirgh and Singh (1990) observed in a field tival in the summer on silty clay loam soil at Pantnagar, where mungbeans cv. Pusa Baishakhi, Type-1 ML 26/10/3 and UMP 79-1-2 were sown at populations of 400000,500000 or 600000 plants ha ${ }^{-1}$. Seed yield was highest in cv. UMP 79-1-2 (1.21 tha ${ }^{-1}$) and lowest in cv. Type-1 (1.06 t). Plant population did not affect seed yield.

Jain et al. (1988) conducted a field experiment with 4 mungbean cultivars at 4 spacing in 1985-86, ML 131 gave the highest average seed yields of $1.83 \mathrm{t} \mathrm{ha}^{-1}$ compared with 1.74 and $1.70 \mathrm{t} \mathrm{ha}^{-1}$ for other cultivars. Crops grown in rows 30 cm apart (333,000 plants ha ${ }^{-1}$) gave yields of $1.86 \mathrm{tha}^{-1}$ compared with 1.50 and 1.70 t ha ${ }^{-1}$ in crops grown in rows $15,22.5$ or 37.5 cm apart.

Singh and Singh (1988) reported that cultivation of 4 mungbean (Vigna radiata) cultivars at a density of 400000,500000 or 600000 plants ha ${ }^{-1}$ gave similar average seed yields of 1.13-1.15 $\mathrm{t} \mathrm{ha}^{-1}$. CV UPM 79-1-2 and ML26/10/3 gave
yields of 1.21 and $1.18 \mathrm{tha}^{-1}$, respectively, compared with $1.06-1.12 \mathrm{t}$ for 2 other cultivars.

Panwar and Sirohi (1987) studied on the effect of plant population on seed yield and its components in mungbean. They used 4 cultivars and two plant population of mungbean. They showed that the yield $h a^{-1}$ and number of seeds pod ${ }^{-1}$ on branches increased with increasing plant density in all cultivars whereas yield plant ${ }^{-1}$ and number of flowers plant ${ }^{-1}$, pods plant ${ }^{-1}$ and pods branch ${ }^{-1}$ decreased in all cultivars.

While working with 2 mungbean cultivars Neciosup (1986) observed that the number of pods ha ${ }^{-1}$ and 1000 -seed weight were higher in the higher population. He also showed that yield increased proportionally with increasing population.

In a population study, involving two varieties, Jewani and Saini (1981) found that the highest yield of mungbean was obtained in the dry season with 400,000 plants ha^{-1}, followed by $5,00,000$ and $6,00,000$ plants ha^{-1}. On the other hand, during wet season planting, a population density of 300,000 plants ha^{-1} appeared to be best for both the varieties. Subramaniam and Palaniappan (1981) showed that irrigated blackgram cultivar CO_{2} grown at 500,000 plants ha^{-1} gave significantly higher seed yields than when grown at 333,333 plants ha ${ }^{-1}$.
. In a study the highest yield was obtained by broadcast sowing with 46 and 36 kg ha^{-1} in case of blackgram and mungbean, respectively (Anonymous, 1982). It was also noted that the yield increased progressively with the rise in seed rate. This increase was mainly due to the increase in plant population per unit area.

A high plant population (400,000 plants $h \mathrm{a}^{-1}$) as compared to low plant population (200,000 plants $h a^{-1}$) produced maximum grain yield in trials of Singh and Malhotra (1983). They reported that maximum bean yield was obtained from a population of 300,000 to 400,000 plants ha $^{-1}$.

Singh et al. (1985) reported that different seed rates influenced the seed yield significantly. The higher grain yield obtained with $50 \mathrm{~kg}_{\text {seed }} \mathrm{ha}^{-1}$ over 20,30 and $40 \mathrm{~kg} \mathrm{ha}^{-1}$ could be attributed to more number of plants per unit area. Seed rates did not affect the other yield contributing characters.

While working with 2 mungbean cultivars Neciosup (1986) observed that the number of pods ha ${ }^{-1}$ and 1000 -seed weight were higher in the higher population. He also showed that yield increased proportionally with increasing population.

Panwar and Sirohi (1987) studied on the effect of plant population on grain yield and its components in mungbean. They used 4 cultivars and two plant population of mungbean. They showed that the yield $h a^{-1}$ and number of seeds pod^{-1} on branches increased with increasing plant density in all cultivars whereas yield plant ${ }^{-1}$ and number of flowers plant $-{ }^{1}$, pods plant ${ }^{-1}$ and pods branch ${ }^{-1}$ decreased in all cultivars.

Thakuria and Saharia (1990) conducted a field trial with two green gram cultivars grown at 222,000 and 330,000 plants ha ${ }^{-1}$ and obtained average cultivars grown at 222,000 and 330,000 plants ha ${ }^{-1}$ and obtained average seed yields of 619 and 680 $\mathrm{kg} \mathrm{ha}{ }^{-1}$ respectively.

Singh and Singh (1995) conducted a ficid experiment in summer 1992 at Pantnagar, Uttar pradesh using 4 cultivars each of mungbean and blackgram sorvn at 20,25 and 30 kg seed ha^{-1}, and 30,35 and 40 kg seed ha^{-1} respectively and found that yield increased with increasing seed rate in both the crop.

At Gazipur, Talukder et al. (1993) conducted a field trial to investigate the effect of crop density (33 and 50 plants m^{-2}) and time of weeding on mungbean. They found that weed population and dry biomass of weeds at a crop density of 50 plants m^{-2} were 20% and 13% less, respectively than those at a crop density of 33 plants m^{-2}. However, a crop density which was considerably high but less than the maximum was found to produce lower yields than the minimum density.

While working with Vigna radiata cultivar K-851 at a rate of 20,30 or 40 kg seed ha ${ }^{-1}$ Tomar et al. (1995) found that absolute growth rate, relative growth rate, net assimilation rate and dry matter (DM) accumulation at all growth stages were highest at a seed rate of $20 \mathrm{~kg} \mathrm{ha}^{-1}$.

From the reviews cited and discussed above, it can be concluded that lower seed rate play a remarkable role for the growth, yield and yield component of mungbean and blackgram

Chapter 3 Matieniels and methods

Chapter-III

MATERIALS AND METHODS

The experiment was conducted in the Firm of Sher-e-Bangla Agricultural University, Dhaka, Bangladesh during the period from March to May 2007 to study the influence of lower seed rate on the growth and yield of mungbean and blackgram. This chapter includes materials and methods that were used is conducting the experiment. It consists of a short description of locations of the experimental site, characteristics of soil, climate, materials used for the experiments, treatment of the investigation, layout and design of the experiment, land preparation, manuring and fertilizing, intercultural operations, irrigation, harvesting, data collection procedure and statistical analysis etc. The details regarding materials and methods of this experiment are presented below under the following headings -

3.1 Experimental site

The experiment was conducted at the Farm of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh. The experimental site is situated between $23^{\circ} 74^{\prime} \mathrm{N}$ latitude and $90^{\circ} 35^{\prime} \mathrm{E}$ longitude (Anon., 1989) and presented in Appendix I.

3.2 Soil

The soil of the experimental area beiongs to the Modhupur Tract (UNDP, 1988) under AEZ No. 28 and posses shallow red brown terrace soil. The selected plot was medium high land and the soil series was Tejgaon (FAO, 1988). The characteristics
of the soil under the experimental plot were analyzed in the Soil Testing Laboratory, SRDI, Khamarbari, Dhaka and presented in Appendix II.

3.3 Climate

The climate of experimental site was subtrcpical, characterized by three distinct seasons, the monsoon or the rainy season from November to February and the premonsoon period or hot season from March to April and the monsoon period from May to October (Edris et al., 1979). Meteorological data related to the temperature, relative humidity and rainfalls during the period of the experiment was collected from the Bangladesh Meteoroiogical Deparment (Climate Division), Sher-eBangla Nagar and presented in Appendix III.

3.4 Planting material

The variety BARImung6 and BARImash1 were used as the test crop. Both the seeds were collected from the Pulse Section of Bangladesh Agricultural Research Institute, Joydevpur, Gazipur.

BARImung6 is a recommended variety of mungbean, which was developed BARI and recommended by the national seed board. It grows both in kharif and rabi season. Life cycle of this variety ranges from 60 to 65 days. The variety is resistant to diseases, insects and pest attack. The variety is resistant to Cercospora leaf spot and yellow mosaic virus. Maximum seed yield is 1.1-1.4 ton/ha. Seeds contain 20.93\% protein and 49.46\% Carbohydrate (BARI, 2004).

BARImashl was used as the test crop. The seeds were collected from the Pulse Section of Bangladesh Agricultural Research Institute, Joydevpur, Gazipur. It is a
recommended variety of blackgram, which was developed by BARI and recommended the national seed board. It grows both in kharif and rabi season. Life cycle of this variety ranges from 65 to 70 days. Maximum seed yield is 1.2-1.5 ton/ha (BARI, 2004).

3.5 Land preparation

The land was irrigated before ploughing. Afier having zoe condition the land was first opened with the tractor drawn dise plough. Ploughed soil was then brought into desirable fine tilth by 4 operations of ploughing, harrowing and laddering. The stubble and weeds were removed. The first ploughing and the final land preparation were done on 20 February and 28 February 2007, respectively. Experimental land was divided into unit plots following the design of experiment.

3.6 Fertilizer application

Well decomposed cowdung was applied at the time of final land preparation. The sources of fertilizers used for N, P and K were urea ($40 \mathrm{~kg} \mathrm{~N} / \mathrm{ha}$), TSP (60 kg $\mathrm{P}_{2} \mathrm{O}_{5} / \mathrm{ha}$), MP (80 kg K $2 \mathrm{O} / \mathrm{ha}$), respectively (BARI, 2004). The entire amounts of urea, TSP, MP were applied during final land preparation.

3.7 Treatments of the experiment

The experiment consists of two factors:
Factor A: Crops
i. Mungbean (BARImung6) - C_{1}
ii. Blackgram (BARImash 1) $-\mathrm{C}_{2}$

Factor B: Seed rate ($30 \mathrm{~kg} \mathrm{ha}^{-1}$ for furrow cultivation, BARI, 2007)
i. 30 kg seeds $\mathrm{ha}^{-1}-\mathrm{S}_{1}$
ii. 27 kg seeds ha^{-1} (10% less than recommended dose $)-\mathrm{S}_{2}$
iii 24 kg seeds ha^{-1} (20% less than recommended dose) $-\mathrm{S}_{3}$
iv. 21 kg seeds ha^{-1} (30% less than reccmmended dose) $-\mathrm{S}_{4}$
v. 18 kg seeds ha ${ }^{-1}(40 \%$ less than reconmended dose $)-\mathrm{S}_{5}$

There were 10 treatment combinations such as $\mathrm{C}_{1} \mathrm{~S}_{1}, \mathrm{C}_{1} \mathrm{~S}_{2}, \mathrm{C}_{1} \mathrm{~S}_{3}, \mathrm{C}_{1} \mathrm{~S}_{4}, \mathrm{C}_{1} \mathrm{~S}_{5}, \mathrm{C}_{2} \mathrm{~S}_{1}$, $\mathrm{C}_{2} \mathrm{~S}_{2}, \mathrm{C}_{2} \mathrm{~S}_{3}, \mathrm{C}_{2} \mathrm{~S}_{4}$ and $\mathrm{C}_{2} \mathrm{~S}_{5}$.

3.8 Experimental design and lay out

The experiment was laid out in a Split plot design with three replications. An area of $22 \mathrm{~m} \times 18.5 \mathrm{~m}$ was divided into three equal blocks. Each block was divided into 10 plots where crop was assigned in the main plot and seed rate in the sub plot at random. There were 30 unit plots altogether in the experiment. The size of each plot was $4.0 \mathrm{~m} \times 2.5 \mathrm{~m}$. The distance maintained between blocks and plots were 1.0 m and 0.5 m respectively. The layout of the experiment shown in Figure 1.

3.9 Sowing of seeds in the field

The seeds of mungbean and blackgram were sown on March 10, 2007. Seeds were treated with Bavistin before sowing the seeds to control the seed borne diseases. The seeds were sown in solid rows in the furrows having a depth of $2-3 \mathrm{~cm}$. Row to row distance was 30 cm .

3.10 Intercultural operations

3.10.1 Irrigation and weeding

Irrigation was done as per requirements. The crop field was weeded twice; first weeding was done at 15 DAS and second weeding was done at 30 DAS.

3.10.2 Protection against insect and pest

At early stage of growth few worms (Agrotis ipsilon) and virus vectors (jassid) attacked the young plants and at later stage of growth pod borer (Maruca testulalis) attacked the plant. Diazinon 50EC was sprayed at the rate of 1 litre/ha to control the attack.

3.11 Crop sampling and data collection

Ten plants from each treatment were randomly sampled and marked with sample card. The data of plant height and number of leaves per plant were recorded from sampled plants at an interval of 10 days which was started from 20 DAS. The number of pods plant ${ }^{-1}$, pod length and number of seeds pod ${ }^{-1}$ were recorded from 10 sample plants from each plot. The nodule number per 5 plants of each plot was collected at 30 DAS. Seed yield and stover yield was collected from inner lines (6 m^{2}) leaving the border areas after properly drying. The weights of 1000 seeds were recorded from seeds randomly collected from each plot, properly counted and oven dried to a moisture content of 12%.

$\mathrm{C}_{1} \mathbf{S}_{2}$	$\mathrm{C}_{2} \mathrm{~S}_{1}$	$\mathrm{C}_{2} \mathrm{~S}_{5}$	$\mathrm{C}_{1} \mathrm{~S}_{4}$	$\mathrm{C}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{1} \mathrm{~S}_{5}$
$\mathrm{C}_{1} \mathrm{~S}_{3}$	$\mathrm{C}_{2} \mathrm{~S}_{5}$	$\mathrm{C}_{2} \mathrm{~S}_{1}$	$\mathrm{C}_{1} \mathrm{~S}_{2}$	$\mathrm{C}_{2} \mathrm{~S}_{5}$	$\mathrm{C}_{1} \mathrm{~S}_{4}$
$\mathrm{C}_{1} \mathrm{~S}_{1}$	$\mathrm{C}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{1} \mathrm{~S}_{1}$	$\mathrm{C}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{1} \mathrm{~S}_{1}$
$\mathrm{C}_{1} \mathrm{~S}_{4}$	$\mathrm{C}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{1} \mathrm{~S}_{3}$	$\mathrm{C}_{2} \mathrm{~S}_{1}$	$\mathrm{C}_{1} \mathrm{~S}_{3}$
$\mathrm{C}_{1} \mathrm{~S}_{5}$	$\mathrm{C}_{2} \mathrm{~S}_{2}$	$\mathrm{C}_{2} \mathrm{~S}_{4}$	$\mathrm{C}_{1} \mathrm{~S}_{5}$	$\mathrm{C}_{2} \mathrm{~S}_{3}$	$\mathrm{C}_{1} \mathrm{~S}_{2}$

Replication I
Replication II
Replication III

Figure-01. Experimental layout

3.12 Harvest and post harvest operations

Harvesting was done when 90% of the pods tecame brown to black in color. The matured pods were collected by hand picking from a pre demarcated area of three linear at the center of each plot.

3.13 Data collection

The following data were recorded
i. Plant height (cm) at 20,30, 40 and 50 DAS and at harvest
ii. Number of leaves per plant at 20, 30, 40 and 50 DAS and at harvest
iii. Number of nodules per plant
iv. Number of plants population m^{-2}
v. Number of pods per plant
vi. Pod length (cm)
vii. Number of seeds per pod
viii. 1000-seed weight (g)
ix. Seed yield $\left(t h a^{-1}\right)$
x. Stover yield (t ha ${ }^{-1}$)
xi. Harvest index

3.14 Procedure of data collection

3.14.1 Plant height (cm)

The heights were measured with a meter scale from the ground level to the top of the plants and the mean height was expressed in cm . Data were recorded as the average of 10 plants selected at random from the inner rows of each plot starting from 20 DAS to 50 DAS and at harvest at 10 days interval.

3.14.2 Number of leaves per plant

The leaves (trifoliate) were counted from selested plants. The average number of leaves per plant was determined. Data were recorded as the average of 10 plants selected at random from the inner rows of each plot starting from 20 DAS to 50 DAS and at harvest at 10 days interval.

3.14.3 Number of plant population m^{-2}

Number of total plants m^{-2} from each plot was counted and the mean number was expressed on per m^{2} basis. Data were recorded at the middle area of $1 \mathrm{~m}^{2}$ area from each plot.

3.14.4 Number of pods per plant

Number of total pods of selected plants from each plot was counted and the mean number was expressed on per plant basis. Data were recorded as the average of 10 plants selected at random from the inner rows of each plot.

3.14.5 Pod length

Pod length of selected plants from each plot was counted and the mean length was expressed on per pod basis. Data were recorded as the average of 10 pods selected at random from the inner rows plant of each plot.

3.14.6 Number of seeds per pod

The number of seeds in each pod was also recorded from randomly selected pods at the harvest. Data were recorded as the average of 10 pods selected at random from the inner rows of each plot.

3.14.7 Weight of $\mathbf{1 0 0 0 - s e e c}(\mathrm{g})$

One thousand cleaned dried seeds were counted randomly from each harvest sample and weighed by using a digital electric balance and weight was expressed in gram (g).

3.14.8 Seed yield ($\mathrm{t} \mathrm{ha}^{-1}$)

The seeds collected from $6.0 \mathrm{~m}^{2}$ of each plot were sun dried properly. The weight of seeds was taken and converted into the yield $\mathrm{tha}{ }^{-1}$.

3.14.9 Stover yield ($\mathbf{t} \mathrm{ha}^{-1}$)

The stover collected from $6.0 \mathrm{~m}^{2}$ of each plot was sun dried properly. The weight of stover was taken and converted into the yield $t \mathrm{ha}^{-1}$.

3.14.10 Harvest index

The harvest index was calculated using the following formula

$$
\begin{aligned}
& \text { Grain Yield } \\
& \text { Harvest Index (\%) = --------------------------------100 } \\
& \text { Biological Yield }
\end{aligned}
$$

3.14.11 Number of nodules per plant

Number of total nodules of selected plants from each plot was counted and the mean number was expressed as per plant basis. Data were recorded as the average of 10 plants selected at random from the inner rows of each plot.

3.15 Statistical analysis

The data obtained for different parameters were statistically analyzed using MSTAT software to find out the significant difference at the influence of seed rate on the growth and yield of mungbean and blackgram. The mean values of all the characters were calculated and analysis of variance was performed by the ' F ' (variance ratio) test. The significance of the difference among the treatment combinations means was estimated by the Least significant difference test (LSD) at 5% level of probability (Gomez and Gomez, 1984).
$78(01) \quad 24 / 12 / 09$

Chapter 4 Resullts \& Discussion

Chapter-IV

RESULTS AND DISCUSSION

The present study was conducted to determine the influence of lower seed rate on the yield attributes and yield of mungbean and blackgram. Data on different yield contributing characters and yield were recorded to find out the optimum seed rate of mungbean and blackgram. The analysis of variance (ANOVA) of the data on different yield components and yield are given in Appendix IV-VII. The results have been presented and discussed, and possible interpretations given under the following headings-

4.1 Plant height

4.1.1 Effect of crop

Plant height varied significantly for the cultivar of mungbean and blackgram at 20, $30,40,50$ and harvest (Appendix IV). At 20 DAS , the longer plant (18.30 cm) was recorded from C_{2} (blackgram), while the shorter plant $(15.64 \mathrm{~cm}$) was found from C_{1} (mungbean). The longer plant (35.70 cm) was recorded in C_{2} and the shorter plant (30.45 cm) was recorded from C_{1} at 30 DAS. At 40 DAS , the longer plant $(42.74 \mathrm{~cm})$ was recorded from C_{2} and the storter plant (36.51 cm) was recorded from C_{1}. The longer plant (55.69 cm) was recorded from C_{2} where as the shorter plant (50.91 cm) was obtained from C_{1} at 50 I)AS. At harvest, longer plant (67.96 $\mathrm{cm})$ was recorded in C_{2} and the shorter plant $(61.55 \mathrm{~cm})$ was observed from C_{1} (Figure 2). It was revealed that cifferent cultivar had different plant height and with the increase of time plant height also increased. Edwin et al. (2005) reported maximum plant height $(61.20 \mathrm{~cm})$ for green gram.

$$
\begin{array}{ll}
\mathrm{S}_{1}: 30 \mathrm{~kg} \text { seeds } \mathrm{ha}^{-1} & \mathrm{~S}_{2}: 27 \mathrm{~kg} \text { seeds } \mathrm{ha}^{-1} \\
\mathrm{~S}_{3}: 24 \mathrm{~kg} \text { seeds } \mathrm{ha}^{-1} & \mathrm{~S}_{4}: 21 \mathrm{~kg} \text { seeds } \mathrm{ha}^{-1} \\
\text { Ss: } 18 \mathrm{~kg} \text { seeds ha }{ }^{-1} &
\end{array}
$$

Figure-3: Effect of different seed rate on plant height of mungbean and blackgram ($\mathrm{LSD}_{0.05}=1.742,2.2022,1.993,3.949,3.103$ at 20,30, 40 and 50 DAS respectivelv)

4.1.2 Effect of seed rate

Significant variation was recorded for plant height of mungbean and blackgram for different seed rate at $20,30,40,50$ DAS and at harvest (Appendix IV). The tallest plant (18.61 cm) was found from $\mathrm{S}_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar $(17.88 \mathrm{~cm}, 17.21 \mathrm{~cm})$ to $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ and $\mathrm{S}_{3}\left(24 \mathrm{~kg}\right.$ seeds ha $\left.{ }^{-1}\right)$ at 2 J DAS where as the shortest plant $(16.03 \mathrm{~cm})$ was observed from $\mathrm{S}_{5}(18 \mathrm{~kg}$ seeds ha* ${ }^{1}$) which was statistically similar $(16.03 \mathrm{~cm})$ to $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. At 30 DAS, the tallest plant (35.33 cm) was found from S_{2} which was closely followed (33.01 cm and 33.73 cm$)$ by S_{1} and S_{4} and the shortest plant $(31.40 \mathrm{~cm})$ was obtained from S_{5} which was statistically similar $(31.93 \mathrm{~cm})$ to S_{3}. At 40 DAS , the longest plant $(42.42 \mathrm{~cm})$ was recorded from S_{2} which was ciosely followed (40.08 cm and 40.02 $\mathrm{cm})$ by S_{4} and S_{1} whereas the shortest plant (37.53 cm) was recorded from S_{5} which was statistically similar $(38.07 \mathrm{~cm})$ to S_{3}. The longest plant $(57.05 \mathrm{~cm})$ was observed from S_{2} which was statistically similar (54.18 cm and 53.17 cm) to S_{1} and S_{4}. On the other hand, the shortest plant $(49.81 \mathrm{~cm})$ was recorded from S_{5} which was statistically similar (52.27 cm) with S_{3} at 50 DAS. At harvest, the longest plant $(69.59 \mathrm{~cm})$ was found from S_{2} which was closely followed $(65.41 \mathrm{~cm}$ and 64.69 $\mathrm{cm})$ by S_{1} and S_{4} whereas the shortest plant $(60.93 \mathrm{~cm})$ was recorded from S_{5} which was statistically similar (63.15 cm) to S_{3} (Figure 3). It was revealed that higher than recommended seed rate generally increases plant population resulting intra crop competition thereby affecting the growth and reduce plant height (Vukadinovic et al., 1986). Talukder et al. (1993) reported that plant height was highest for optimum plant population than the highest and lowest population.

Table 1．Interaction effect of crop and seed cate on plant height of mungbean and blackgram

Treatments					
	20DAS	130 DAS	40DAS	50 DAS	Atharyest
$\mathrm{C}_{1} \mathrm{~S}_{1}$	16.12 c	29.22 cd	35.76 e	52.20 bc	63.00 cd
$\mathrm{C}_{1} \mathrm{~S}_{2}$	16.60 bc	32.51 b	39.28 d	53.80 bc	65.54 bc
$\mathrm{C}_{1} \mathrm{~S}_{3}$	15.37 cd	28.32 d	34.17 ef	49.44 cd	59.78 d
$\mathrm{C}_{1} \mathrm{~S}_{4}$	16.68 bc	35.63 a	41.18 cd	54.52 abc	66.24 bc
$\mathrm{C}_{1} \mathrm{~S}_{5}$	13.40 d	26.60 d	32.14 f	44.57 d	53.18 e
$\mathrm{C}_{2} \mathrm{~S}_{1}$	19.64 a	36.79 a	44.27 ab	56.16 ab	67.82 bc
$\mathrm{C}_{2} \mathrm{~S}_{2}$	20.62 a	38.15 a	45.56 a	60.29 a	73.65 a
$\mathrm{C}_{2} \mathrm{~S}_{3}$	19.04 ab	35.54 a	41.97 bcd	55.11 abc	66.53 bc
$\mathrm{C}_{2} \mathrm{~S}_{4}$	15.38 cd	31.84 bc	38.98 d	51.83 bc	63.13 cd
$\mathrm{C}_{2} \mathrm{~S}_{5}$	16.82 bc	36.20 a	42.93 abc	55.04 abc	68.68 b
$\mathrm{LSD}_{(0.05)}$	2.463 校	2.860 为		5.584	4.388
Level of significance	－		＊＊	19，	＊＊
CV（\％）	8.39 相	6.99 雨	10．11	6．05	9.91 ＝

In a column means having similar letter（s）are statistically similar and those having dissimilar letter（s）differ significantly as per 0.05 level of probability．

Here， C_{1} ：BARImung6， $\mathrm{C}_{2}:$ BARImash1， $\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds ha ${ }^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha ${ }^{-1}$ ，
$\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{5}: 18 \mathrm{~kg} \mathrm{seeds} \mathrm{ha}^{-1}$

4.1.3 Interaction effect of crop and seed rate

Interaction effect of crop and seed rate showed statistically significant variation for plant height at $20,30,40,50$ DAS and at harvest (Appendix IV). At 20 DAS, the tallest plant (20.62 cm) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha^{-1}) that similar to $C_{2} S_{1}$ and $C_{2} S_{3}$ where as the shortest plant (13.40 cm) plant was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha ${ }^{-1}$) that similar to $\mathrm{C}_{1} \mathrm{~S}_{3}$ and $\mathrm{C}_{2} \mathrm{~S}_{4}$. The tallest plant (38.15 cm) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ with statistically similar to $\mathrm{C}_{2} \mathrm{~S}_{1}, \mathrm{C}_{2} \mathrm{~S}_{5}$, $\mathrm{C}_{1} \mathrm{~S}_{4}$ and $\mathrm{C}_{2} \mathrm{~S}_{3}$ while the shortest plant (26.60 cm) was obtained from $\mathrm{C}_{1} \mathrm{~S}_{5}$ at 30 DAS that similar to $\mathrm{C}_{1} \mathrm{~S}_{3}$ and $\mathrm{C}_{1} \mathrm{~S}_{1}$. At 40 DAS , the tallest plant $(45.56 \mathrm{~cm})$ was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ with similar to $\mathrm{C}_{2} \mathrm{~S}_{1}$ and $\mathrm{C}_{2} \mathrm{~S}_{5}$ and the shortest plant (32.14 cm) was observed from $C_{1} S_{5}$ that similar to $C_{1} S_{3}$. The longest plant (60.29 cm) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ that similar to $\mathrm{C}_{2} \mathrm{~S}_{1}, \mathrm{C}_{2} \mathrm{~S}_{3}, \mathrm{C}_{2} \mathrm{~S}_{5}$ and $\mathrm{C}_{1} \mathrm{~S}_{4}$ again the shortest plant $(44.57 \mathrm{~cm})$ plant was recorded from $C_{1} S_{5}$ at 50 DAS that similar to $C_{1} S_{3}$. At harvest, the tallest plant (73.65 cm) was found from $\mathrm{C}_{2} \mathrm{~S}_{2}$. On the other hand the shortest plant (53.18 cm) was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (Table 1).

4.2 Number of leaves per plant

4.2.1 Effect of crop

At 20,30,40,50 DAS and harvest number of leaves per plant varied significantly for mungbean and blackgram (Appendix V). At 20 DAS , the higher number of leaves per plant (5.74) was recorded from C_{2} (blackgram), and the lower number of leaves per plant (4.39) was found from C_{1} (mungbean). The higher number of leaves per plant (10.29) was recorded in C_{2} and the lower (8.51) was recorded from C_{1} at 30 DAS. At 40 DAS, the higher number of leaves per plant (13.78) was
recorded from C_{2} and the lower (13.10) was found from C_{1}. The higher number of leaves per plant (24.15) was recorded from C_{2} where as the lower (19.18) wers obtained from C_{1} at 50 DAS. At iarvest, higher number of leaves per plant (27.35) was recorded in C_{2} while the lower (22.16) was observed from C_{1} (Figure 4).

4.2.2 Effect of seed rate

Number of leaves per plant of mungbean and blackgram showed statistically significant differences due to different seed rates at $20,30,40,50 \mathrm{DAS}$ and at harvest (Appendix V). The highest number of leaves per plant (6.20) was recorded from $\mathrm{S}_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was closely followed (5.35) by $\mathrm{S}_{1}(30 \mathrm{~kg}$ seeds ha${ }^{1}$) at 20 DAS. Again, the lowest number of leaves per plant (4.53) was observed from $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (4.59 and 4.64) to S_{3} (24 kg seeds $\left.\mathrm{ha}^{-1}\right)$ and $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. At 30 DAS , the highest number of leaves per plant (11.20) was found from S_{2} which was closely followed (9.82 and 9.67) by S_{4} and S_{1} while the lowest number of leaves per plant (7.61) was obtained from S_{5} which was closely followed (8.70) by S_{3}. At 40 DAS, the highest number of leaves per plant (14.80) was recorded from S_{2} which was closely followed (13.70, 13.45 and 13.21) by $\mathrm{S}_{1}, \mathrm{~S}_{4}$ and S_{3} whereas the lowest (12.05) was recorded from S_{5}. The highest number of leaves per plant (24.33) was observed from S_{2} at 50 DAS. On the other hand the lowest (19.36) was recorded from S_{5}. At harvest, the highest number of leaves per plant (29.90) was found from S_{2} while the lowest number of leaves per plant (19.73) was recorded from S_{5} which was statistically similar (23.24) to S_{3} (Figure 5).

Figure-4: Number of leaves per plant for mungbean and blackgram crops (LSD $0.05=1.083,0.784,0.211,0.099,2.984$ at $20,30,40$ and 50 DAS respectively)

Figure-5: Effect of different seed rate on number of leaves per plant for mungbean and blackgram (LSD $0.05=0.480,0.623,0.701,1.408,2.020$ at 20 , 30, 40 and 50 DAS respectively)

4.2.3 Interaction effect of crop and seed rate

Number of leaves per plant at $20,30,40,50 \mathrm{DAS}$ and harvest showed statistically significant interaction effect between crop and seed rate (Appendix V). At 20 DAS, the highest number of leaves per plant (6.58) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram + 27 kg seeds ha^{-1}) that was similar to $\mathrm{C}_{2} \mathrm{~S}_{1}$ where as the lowest number of leaves per plant (3.22) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha^{-1}) that similar to $\mathrm{C}_{1} \mathrm{~S}_{3}$. The highest number of leaves per plant (12.35) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the lowest number of leaves per plant (7.09) was obtained from $\mathrm{C}_{1} \mathrm{~S}_{5}$ at 30 DAS which was similar to $\mathrm{C}_{1} \mathrm{~S}_{3}$. At 40 DAS, the highest number of leaves per plant (15.32) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ while the lowest number of leaves per plant (11.03) was observed from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The highest number of leaves per plant (27.85) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the lowest (16.53) number of leaves per plant was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ at 50 DAS. At harvest, the highest number of leaves per plant (30.02) was found from $\mathrm{C}_{2} \mathrm{~S}_{2}$ that was similar to $\mathrm{C}_{2} \mathrm{~S}_{1}$ while the lowest number of leaves per plant (18.32) was recorded from $\Theta_{1}^{1} \mathrm{~S}_{5}$ (Table 2) which was similar to $\mathrm{C}_{1} \mathrm{~S}_{3}, \mathrm{C}_{1} \mathrm{~S}_{1}$ and $\mathrm{C}_{2} \mathrm{~S}_{5}$.

Table 2. Interaction effect of crop and seed rate on number of leaves per plant of mungbean and blackgram

Treatments	Number of leaves per plant at				
	20 DAS	30 DAS	40DAS	50. DAS	Atharvest
$\mathrm{C}_{1} \mathrm{~S}_{1}$	4.30 ef	8.38 e	13.71 bc	19.78 ef	21.14 de
$\mathrm{C}_{1} \mathrm{~S}_{2}$	5.82 bc	10.04 bcd	14.28 b	20.81 de	27.80 bc
$\mathrm{C}_{1} \mathrm{~S}_{3}$	3.85 fg	7.79 ef	12.86 c	18.61 f	19.86 e
$\mathrm{C}_{1} \mathrm{~S}_{4}$	4.76 de	9.26 d	13.65 bc	20.15 def	23.68 d
$\mathrm{C}_{1} \mathrm{~S}_{5}$	3.22 g	7.09 f	11.03 d	16.53 g .	18.32 e
$\mathrm{C}_{2} \mathrm{~S}_{1}$	6.40 ab	10.95 b	13.68 bc	24.55 b	30.02 ab
$\mathrm{C}_{2} \mathrm{~S}_{2}$	6.58 a	12.35 a	15.32 a	27.85 a	32.00 a
$\mathrm{C}_{2} \mathrm{~S}_{3}$	5.33 cd	9.62 cd	13.56 bc	23.89 bc	26.61 c
$\mathrm{C}_{2} \mathrm{~S}_{4}$	4.53 ef	10.38 bc	13.26 bc	22.27 cd	26.97 c
$\mathrm{C}_{2} \mathrm{~S}_{5}$	5.85 bc	8.13 e	13.07 c	22.19 cd	21.14 de
LSDD (0.05)	0.679	0.881	0.991	19913	2.856
Level ofsignificance	**	**	*		
CV(\%)	7.76	8.17 \%	6:26	5.31	6.67

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability.

Here, $\mathrm{C}_{1}:$ BARImung6, $\mathrm{C}_{2}:$ BARImash1, $\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds ha ${ }^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha^{-1},
$\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{5}: 18 \mathrm{~kg}$ seeds ha^{-1}

4.3 Number of nodules per plant

4.3.1 Effect of crop

The number of nodules per plant varied significantly for the cultivar of mungbean and blackgram (Appendix VII). The maximum number of nodules per plant (22.45) was recorded from C_{2} (blackgram) where as the minimum number of nodules per plant (20.60) was recorded from C_{1} as mungbean (Figure 6).

4.3.2 Effect of seed rate

The number of nodules per plant of mungbean and blackgram showed statistically significant differences due to different seed rates (Appendix VII). The highest number of nodules per plant (22.95) was found from $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (21.20) to $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. The minimum number of nodules per plant (18.20) was recorded from $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (20.50 and 20.55) to $S_{3}\left(24 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ and S_{2} as 27 kg seeds $h \mathrm{a}^{-1}$ (Figure 7).

4.3.3 Interaction effect of crop and seed rate

The different seed rate of mungbean and blackgram showed statistically significant variation for number of nodules per plant (Appendix VII). The maximum number of nodules per plant (23.60) was recorded fronı $\mathrm{C}_{2} \mathrm{~S}_{3}$ (blackgram +24 kg seeds ha ${ }^{-1}$) and the minimum number of nodules per plant (18.20) plant was obtained from $\mathrm{C}_{1} \mathrm{~S}_{1}$ as mungbean +30 kg seeds ha^{-1} (Figure 8).

$\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds ha^{-1}	$\mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha^{-1}
$\mathrm{~S}_{3}: 24 \mathrm{~kg}$ seeds ha ${ }^{-1}$	$\mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds ha^{-1}
Ss $^{-1} \cdot 18 \mathrm{ko}$ speede ha a^{-1}	

Figure 7. Effect of different seed rate on number of nodule plant ${ }^{-1}$ of mungbean and blackgram $(L s d 0.05=1.728)$

Figure 8. Interaction effect of different seed rate on number of nodule plant ${ }^{-1}$ of mungbean and blackgram (L.sd0.05-2.056)

4.4 Number of plant population $/ \mathrm{m}^{2}$

4.4.1 Effect of crop

Cultivar of mungbean and blackgram showed statistically significant differences for number of plant population $/ \mathrm{m}^{2}$ (Appendix V). The maximum number of plant population $/ \mathrm{m}^{2}$ (31.21) was obtained from C_{2} (blackgram), where as the minimum number of plant population $/ \mathrm{m}^{2}(25.47)$ was found from C_{1} (mungbean) (Table 3).

4.4.2 Effect of seed rate

Statistically significant variation was recorded due to different seed rate for number of plant population $/ \mathrm{m}^{2}$ of mungbean and blackgram (Appendix VI). The maximum number of plant population $/ \mathrm{m}^{2}(33.48)$ was found from $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was closely followed (30.85) by $\mathrm{S}_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ while the minimum number of plant population $/ \mathrm{m}^{2}(21.74)$ was recorded from $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ (Table 3).

4.4.3 Interaction effect of crop and seed rate

Interaction effect of cultivar and seed rate showed statistically significant variation for number of plant population $/ \mathrm{m}^{2}$ (Appendix VI). The maximum number of plant population $/ \mathrm{m}^{2}$ (35.46) was observed from $\mathrm{C}_{2} \mathrm{~S}_{1}$ (blackgram +30 kg seeds ha^{-1}) which was statistically similar with $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha^{-1}). On the other hand, the minimum number of plant population $/ \mathrm{m}^{2}$ (15.27) was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha^{-1}) (Table 4).

Table 3. Effect of seed rate on number of plant population per m^{2} and yield contributing characters of mungbean and blackgram crops

| Treatments | Number of
 plant
 population per
 m^{2} | Number of
 pods per plant | (cm) | Number of
 seeds per pod |
| :---: | :---: | :---: | :---: | :---: | :---: |

Cultivar

C_{1}	25.47 b	18.10 b	6.16 b	7.26 b
C_{2}	31.21 a	20.24 a	6.98 a	7.82 a
LSD $_{(0.05)}$	4.388	1.183	0.573	0.355
Level of significance	$*$	$*$	$*$	

Seed rate

S_{1}	33.48 a	17.53 c	6.80 a	7.76 a
S_{2}	30.85 b	19.27 b	6.95 a	7.94 a
S_{3}	28.7! c	18.08 c	6.34 b	7.30 bc
S4	26.92 d	20.87 a	6.71 a	7.57 ab
S_{5}	21.74 e	20.09 ab	6.04 c	7.14 c
$\operatorname{LSD}_{(0.05)}$	प 1.570 -		F 0.290 ,	
Level of significance	**	*** * \% ${ }_{\text {\% }}$		
CV(\%)	2. 9.53 ,	8.48		-7.93

In a column, means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability.

Here, C_{1} : BARImung6, C_{2} : BARImash1, $\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha^{-1},
$\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{5}: 18 \mathrm{~kg}$ seeds ha^{-1}

Table 4. Interaction effect of seed rate on number of plant population per m^{2} and yield contributing characters of mungbean and blackgram crops

Treatments	Number of plant population per m^{2}	Number of pods perplant \qquad	$\begin{aligned} & \text { Pod length } \\ & (\mathrm{cm}) \end{aligned}$	Number of seedsperpod
$\mathrm{C}_{1} \mathrm{~S}_{1}$	35.99 a	14.17 d	6.20 cd	7.29 cd
$\mathrm{C}_{1} \mathrm{~S}_{2}$	31.50 b	20.91 b	6.52 bc	7.68 abc
$\mathrm{C}_{1} \mathrm{~S}_{3}$	22.30 e	17.89 c	5.91 d	7.03 d
$\mathrm{C}_{1} \mathrm{~S}_{4}$	22.27 e	18.86 c	6.80 b	7.99 ab
$\mathrm{C}_{1} \mathrm{~S}_{5}$	15.27 f	18.65 c	5.36 e	6.33 e
$\mathrm{C}_{2} \mathrm{~S}_{1}$	35.46 a	20.89 b	7.39 a	8.22 a
$\mathrm{C}_{2} \mathrm{~S}_{2}$	35.15 a	17.63 c	7.39 a	8.20 a
$\mathrm{C}_{2} \mathrm{~S}_{3}$	31.53 b	18.28 c	6.77 b	7.57 bcd
$\mathrm{C}_{2} \mathrm{~S}_{4}$	28.20 c	22.38 a	6.62 bc	7.15 cd
$\mathrm{C}_{2} \mathrm{~S}_{5}$	25.71 d	21.54 ab	6.72 b	7.95 ab
$\operatorname{LSD}_{(0.05)}$			- 0.410	0.0.514
Level of significance	***			**
CV(\%)	P19.53		- 9.59	7.9.93

In a column, means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability.

Here, $\mathrm{C}_{1}:$ BARImung6, $\mathrm{C}_{2}:$ BARImash $1, \mathrm{~S}_{1}: 30 \mathrm{~kg}$ seeds ha ${ }^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha^{-1}, $\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{5}: 18 \mathrm{~kg}$ seeds ha^{-1}

4.5 Number of pods per plant

4.5.1 Effect of crop

Statistically significant variation was recorded in number of pods per plant for the cultivar of mungbean and blackgram (Appendix VI). The maximum number of pods per plant (20.24) was obtained from C_{2} (blackgram) and the minimum number of pods per plant (18.10) was found from C_{1} (mungbean) (Table 3). Edwin et al. (2005) reported highest number of pods per plant (17.43) for green gram.

4.5.2 Effect of seed rate

Number of pods per plant of mungbean and blackgram varied significantly due to different seed rate (Appendix VI). The maximum number of pods per plant (20.87) was recorded from $S_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (20.09) to S_{5} (18 kg seeds ha^{-1}) where as the minimum number of pods per plant (17.53) was found from $S_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (18.08) to $\mathrm{S}_{3}(24 \mathrm{~kg}$ seeds ha^{-1}) (Table 3). Pookpakdi and Pataradilok (1993) reported that yield was generally increased with increasing plant density, while pod number plant ${ }^{-1}$ decreased with increasing density. Panwar and Sirohi (1987) reported that pods plant ${ }^{-1}$ decreased in all cultivars with increasing plant density.

4.5.3 Interaction effect of crop and seed rate

Interaction effect of cultivar and seed rate showed statistically significant variation for number of pods per plant of mungbean and blackgram (Appendix VI). The maximum number of pods per plant (22.88) was obtained from $\mathrm{C}_{2} \mathrm{~S}_{4}$ (blackgram + 21 kg seeds ha^{-1}) that was similar to $\mathrm{C}_{2} \mathrm{~S}_{5}$ and the minimum number of pods per plant (14.17) was found from $\mathcal{C}_{1} S_{1}$ (mungbean +30 kg seeds ha ${ }^{-1}$) (Table 4).

4.6 Pod length

4.6.1 Effect of crop

Pod length varied significantly for the cultivar of mungbean and blackgram (Appendix VI). The maximum pod length $(6.98 \mathrm{~cm})$ was obtained from C_{2} (blackgram) and the minimum pod length $(6.16 \mathrm{~cm})$ was found from C_{1} (mungbean) (Table 3).

4.6.2 Effect of seed rate

Statistically significant differences were recorded due to different seed rate in pod length of mungbean and blackgram (Appendix VI). The maximum pod length (6.95 $\mathrm{cm})$ was found from $\mathrm{S}_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (6.80 cm and $6.71 \mathrm{~cm})$ to $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}{ }^{-1}\right)$ and $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. On the other hand, the minimum pod length $(6.04 \mathrm{~cm})$ was recorded from $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ (Table 3).

4.6.3 Interaction effect of crop and seed rate

Pod length showed statistically significant differences for the interaction effect of crop and seed rate (Appendix VI). The maximum pod length (7.39 cm) was observed from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha^{-1}) and $\mathrm{C}_{2} \mathrm{~S}_{1}$ (blackgram +30 kg seeds ha^{-1}) while the minimum pod length (5.36 cm) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha^{-1}) (Table 4).

4.7 Number of seeds per pod

4.7.1 Effect of crop

The number of seeds per pod showed statistically significant differences for the cultivar of mungbean and blackgram (Appendix VI). The maximum number of seeds per pod (7.82) was recorded from C_{2} (blackgram), while the minimum number of seeds per pod (7.26) was found from C_{1} (mungbean) (Table 3). Nigamananda Elamathi (2007) found that the highest seeds/pod (6.80) from blackgram.

4.7.2 Effect of seed rate

Statistically significant differences were observed due to different seed rate in number of seeds per pod of mungbean and blackgram (Appendix VI). The maximum number of seeds per pod (7.94) was found from $S_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (7.76 and 7.57) to $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds ha $\left.{ }^{-1}\right)$ and $\mathrm{S}_{4}(21 \mathrm{~kg}$ seeds ha^{-1}) where as, the minimum number of seeds per pod (7.14) was observed from $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar (7.30) to $\mathrm{S}_{3}(24 \mathrm{~kg}$ seeds $h \mathrm{a}^{-1}$) (Table 3).

4.7.3 Interaction effect of crop and seed rate

Interaction effect of crop and seed rate showed statistically significant variation for number of seeds per pod of mungbean and blackgram (Appendix VI). The maximum number of seeds per pod (8.22) was observed from $\mathrm{C}_{2} \mathrm{~S}_{1}$ (blackgram + 30 kg seeds ha^{-1}) that was similar to $\mathrm{C}_{2} \mathrm{~S}_{1}, \mathrm{C}_{1} \mathrm{~S}_{4}, \mathrm{C}_{2} \mathrm{~S}_{5}$ and $\mathrm{C}_{1} \mathrm{~S}_{2}$ where as the
minimum number of seeds per pod (6.33) was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha^{-1}) (Table 4).

4.8 Weight of 1000 seeds

4.8.1 Effect of crop

The weight of 1000 seeds varied significantly for the cultivar of mungbean and blackgram (Appendix VII). The maximum weight of 1000 seeds $(21.77 \mathrm{~g})$ was obtained from C_{2} (blackgram) and the minimum weight of 1000 seeds $(19.86 \mathrm{~g})$ was recorded from C_{1} (mungbean) (Table 5). Neciosup (1986) observed that the 1000 -seed weight were higher in the higher population.

4.8.2 Effect of seed rate

The weight of 1000 seeds of mungbean and blackgram showed statistically significant differences due to different seed rite (Appendix VII). The maximum weight of 1000 seeds $(22.40 \mathrm{~g})$ was recorded from $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was statistically similar $(21.53 \mathrm{~g})$ to $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. On the other hand, the minimum weight of 1000 seeds $(18.26 \mathrm{~g})$ was found from $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ (Table 5).

4.8.3 Interaction effect of crop and seed rate

Statistically significant variation was recorded for the interaction effect of cultivar and seed rate in weight of 1000 seeds (Appendix VII). The maximum weight of 1000 seeds $(23.51 \mathrm{~g})$ was observed from $\mathrm{C}_{2} \mathrm{~S}_{4}$ (blackgram +21 kg seeds ha ${ }^{-1}$) while the minimum weight of 1000 seeds $(16.29 \mathrm{~g})$ was found from $\mathrm{C}_{1} \mathrm{~S}_{1}$ (mungbean +30 kg seeds ha^{-1}) (Table 6).

Table 5．Effect of seed rate on yield contributing characters and yield of mungbean and blackgram crops

Treatments	Weight of 1000 seeds（g）	Seed yield （t／ha）	Stover yield （tha）	Harvest index （\％）
Cultivar				
C_{1}	19.86 b	1.01 b	1.24 b	44.76
C_{2}	21.77 a	1.13 a	1.39 a	44.82
$\mathrm{LSD}_{(0.05)}$	1.337	0.086 ¢ ${ }^{\text {a }}$	－ 0.050	亚吅－－
Level of significance	He．＊			W相
Seed rate				
S_{1}	18.26 c	1.10 b	1.35 b	44.69
S_{2}	20.79 b	1.20 \％	1.49 a	44.56
S_{3}	21.07 b	1.08 b	1.33 b	44.79
S_{4}	22.40 a	1.05 b	1.30 b	44.83
S_{5}	21.53 ab	0.91 c	1.12 c	45.05
$\mathrm{LSD}_{(0.05)}$	0．935		T ${ }^{\text {a }}$ ，0．087	－${ }^{\text {¢ }}$
Level of significance	＊＊＊＊＊	－		NS
CV（\％）	2 6.67 ＋idata	6at 6．07	缼＝8．22	

In a column，means having similar letter（s）are statistically similar and those having dissimilar letter（s）differ significantly as per 0.05 level of probability．

Here， $\mathrm{C}_{1}:$ BARImung6， $\mathrm{C}_{2}:$ BARImash $1, \mathrm{~S}_{1}: 30 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha ${ }^{-1}$ $\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{\mathrm{s}}: 18 \mathrm{~kg}$ seeds ha^{-1}

Table 6. Interaction effect of seed rate on yield contributing characters and yield of mungbean and blackgram crops

7. Treatments	Weight of 1000 seeds (g)	Seed yield (t/ha)	मover yield (tha)	Harvest index (\%)
$\mathrm{C}_{1} \mathrm{~S}_{1}$	16.29 g	1.20 a	1.49 a	44.65
$\mathrm{C}_{1} \mathrm{~S}_{2}$	20.02 ef	1.16 a	1.44 a	44.63
$\mathrm{C}_{1} \mathrm{~S}_{3}$	19.62 f	0.95 b	1.16 b	45.03
$\mathrm{C}_{1} \mathrm{~S}_{4}$	21.30 bede	0.92 b	1.12 bc	45.10
$\mathrm{C}_{1} \mathrm{~S}_{5}$	22.05 bc	0.81 c	1.01 c	44.56
$\mathrm{C}_{2} \mathrm{~S}_{1}$	20.23 def	0.99 b	1.21 b	44.93
$\mathrm{C}_{2} \mathrm{~S}_{2}$	21.56 bcd	1.24 a	1.55 a	44.50
$\mathrm{C}_{2} \mathrm{~S}_{3}$	22.52 ab	1.21 a	1.51 a	44.54
$\mathrm{C}_{2} \mathrm{~S}_{4}$	23.51 a	1.19 a	1.48 a	44.57
$\mathrm{C}_{2} \mathrm{~S}_{5}$	21.01 cdef	1.02 b	1.22 b	45.54
$\mathrm{LSD}_{(0,05)}$	1.322	积 0.110 ,	0.122	H0
Level of significance	**		**	NS
CV(\%)	79.67		80.8.22	5:11

In a column, means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly as per 0.05 level of probability.

Here, $\mathrm{C}_{1}:$ BARImaig6, $\mathrm{C}_{2}:$ BARImash1, $\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds ha ${ }^{-1}, \mathrm{~S}_{2}: 27 \mathrm{~kg}$ seeds ha ${ }^{-1}$
$\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{4}: 21 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}, \mathrm{~S}_{5}: 18 \mathrm{~kg}$ seeds ha^{-1}

4.9 Seed yield (t/ha)

4.9.1 Effect of crop

The mungbean and blackgram showed statistically significant differences for seed yield per hectare (Appendix VII). The maximum seed yield per hectare (1.13 ton) was found from C_{2} (blackgram). On the other hand the minimum seed yield per hectare (1.01 ton) was observed from C_{i} (mungbean) (Table 5). Patro and Sahoo (1994) reported that yield was not significantly different between cultivars.

4.9.2 Effect of seed rate

Seed yield per hectare of mungbean and blackgram showed statistically significant differences due to different seed rates (Appendix VII). The maximum seed yield per hectare $(1.20$ ton $)$ was recorded from $S_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$. The minimum seed yield per hectare (0.91 ton) was found from $\mathrm{S}_{5}\left(18 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ (Table 5). It was revealed that higher than recommended seed rate generally increases plant population resulting intra crop competition thereby affecting the yield where as lower seed rate may reduce the yield drastically as the grain yield is positively correlated with plant population (Vukadinovic et al., 1986). Talukder et al. (1993) reported that a crop density which was considerably high but less than the maximum was found to produce lower yields than the minimum density.

4.9.3 Interaction effect of crop and seed raie

The statistically significant variation of seed yield per hectare was recorded for the interaction effect of cultivar and seed rate of mungbean and blackgram (Appendix VII). The maximum seed yield per hectare (1.24 ion) was obtained from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha^{-1}) and it was similar to $\mathrm{C}_{2} \mathrm{~S}_{3}, \mathrm{C}_{1} \mathrm{~S}_{1}, \mathrm{C}_{2} \mathrm{~S}_{4}$ and $\mathrm{C}_{1} \mathrm{~S}_{2}$
whereas as the minimum seed yield per hectare $\left(0.81\right.$ ton) was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha ${ }^{-1}$) (Table 6).

4.10 Stover yield per hectare

4.10.1 Effect of crop

The stover yield per hectare varied significantly for the cultivar of mungbean and blackgram (Appendix VII). The maximum stover yield per hectare (1.39 ton) was found from C_{2} (blackgram), while the minimum stover yield per hectare (1.24 ton) was found from C_{1} (mungbean) (Table 5).

4.10.2 Effect of seed rate

Stover yield per hectare of mungbean and blackgram showed statistically significant differences due to different seed rates (Appendix VII). The highest stover yield per hectare (1.49 ton) was recorded from $\mathrm{S}_{2}\left(27 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$ which was closely followed (1.35 ton, 1.33 ton and 1.30 ton) by $\mathrm{S}_{1}\left(30 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right), \mathrm{S}_{3}$ (24 kg seeds ha^{-1}) and $\mathrm{S}_{4}\left(21 \mathrm{~kg}\right.$ seeds $\left.\mathrm{ha}^{-1}\right)$, respectively. On the other hand, the minimum stover yield per hectare (1.12 ton) was obtained from $\mathrm{S}_{5}(18 \mathrm{~kg}$ seeds ha* ${ }^{1}$) (Table 5). In lower plant population, individual plant performance is better than that of higher plant population but within tolerable limit higher plant population produces higher stover yield ha ${ }^{-1}$ (Shukla and Dixit, 1996).

4.10.3 Interaction effect of crop and seed rate

The interaction effect of cultivar and seed rate showed statistically significant variation for stover yield per hectare (Appendix VII). The maximum stover yield per hectare (1.55 ton) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha ${ }^{-1}$) that was similar to $\mathrm{C}_{2} \mathrm{~S}_{3}, \mathrm{C}_{2} \mathrm{~S}_{4}, \mathrm{C}_{1} \mathrm{~S}_{1}$ and $\mathrm{C}_{1} \mathrm{~S}_{2}$ vhile the minimum stover yield per
hectare (1.01 ton) was recorded from $\mathrm{C}_{1} \mathrm{~S}_{5}$ (mungbean +18 kg seeds ha ${ }^{-1}$) that similar to $\mathrm{C}_{1} \mathrm{~S}_{4}$ (Table 6).

4.11 Harvest Index

4.11.1 Effect of crop

The harvest index varied non-significantly for the cultivar of mungbean and blackgram (Appendix VII). The numerically maximum harvest index (44.82%) was found from C_{2} (blackgram) and the minimum harvest index (44.76%) was found from C_{1} (mungbean) (Table 5).

4.11.2 Effect of seed rate

The statistically non significant differences were recorded due to different seed rates for harvest index of mungbean and blackgram (Appendix VII). The numerically maximum harvest index (45.05%) was found from $\mathrm{S}_{5}(18 \mathrm{~kg}$ seeds ha' ${ }^{1}$). On the other hand, the minimum harvest index (44.56%) was found from S_{2} as 27 kg seeds ha^{-1} (Table 5). Tsiung (1978) reported that in mungbean the harvest index declined before the maximum grain yield was attained, usually from the lowest density. He further reported that there was an increase in harvest index up to density giving the higher grain yield.

4.11.3 Interaction effect of crop and seed rate

Interaction effect of crop and seed rate showed statistically non significant variation for harvest index of mungbean and blackgram (Appendix VII). The numerically maximum harvest index (45.54%) was observed from $\mathrm{C}_{2} \mathrm{~S}_{5}$ (blackgram +18 kg seeds $h a^{-1}$) and the minimum harvest index (44.50%) was found from $\mathrm{C}_{2} \mathrm{~S}_{2}$ (blackgram +27 kg seeds ha^{-1}) (́Table 6).

Chapter 5 §ummary \& Conclusion

Chapter-V

SUMMARY AND CONCLUSION

The experiment was conducted in the Farm of Sher-e-Bangla Agricultural University, Dhaka, during the period from March to May 2007 to study the influence of seed rate on the growth and yield of mungbean and blackgram. The experiment consists of two factors. Factor A : Crops C_{1} : BARImung6 and C_{2} : BARImash1; Factor B: Seed rate, $\mathrm{S}_{1}: 30 \mathrm{~kg}$ seeds ha^{-1} (recommended dose), $\mathrm{S}_{2}: 27$ kg seeds $\mathrm{ha}^{-1}\left(10 \%\right.$ less than recommended dose), $\mathrm{S}_{3}: 24 \mathrm{~kg}$ seeds $\mathrm{ha}^{-1}(20 \%$ less than recommended dose), $\mathrm{S}_{4}: 21 \mathrm{~kg}$ seeds ha^{-1} (30% less than recommended dose) and $\mathrm{S}_{5}: 18 \mathrm{~kg}$ seeds ha^{-1} (40% less than recommended dose). The two factors experiment was laid out in Split plot design with three replications.

At $20,30,40,50 \mathrm{DAS}$ and at harvest the taller plant $(18.30 \mathrm{~cm}, 35.70 \mathrm{~cm}, 42.74$ $\mathrm{cm}, 55.69 \mathrm{~cm}$ and 67.96 cm) was recorded from C_{2}, while the shorter plant (15.64 $\mathrm{cm}, 30.45 \mathrm{~cm}, 36.51 \mathrm{~cm}, 50.91 \mathrm{~cm}$ and 61.55 cm) was found from C_{1} at same DAS. The higher number of leaves per plant $(5.74,10.29,13.78,24.15$ and 27.35$)$ was recorded from C_{2}, while the lower $(4.39,8.51,13.1019 .18$ and 22.16) was found from C_{1} at $20,30,40,50 \mathrm{DAS}$ and at harvest. The higher plant population $/ \mathrm{m}^{2}$ (31.21) was recorded from C_{2} while the lower (25.47) was found from C_{1}. The maximum number of pods per plant (20.24) was recorded from C_{2} (blackgram), while the minimum (18.10) was found from C_{1}. The maximum pod length (6.98 $\mathrm{cm})$ was recorded from C_{2}, while the minimum $(6.16 \mathrm{~cm})$ was found from C_{1}. The maximum number of seeds per pod (7.82) was recorded from C_{2}, while the
minimum (7.26) was found from C_{1}. The maximum weight of 1000 seeds $(21.77 \mathrm{~g})$ was recorded from C_{2} while the minimum (19.86 g) was found from C_{1}. The maximum seed yield per hectare (1.13 ton) was recorded from C_{2} while the minimum (1.01 ton) was found from C_{1}. The maximum stover yield per hectare (1.39 ton) was recorded from C_{2} (blackgram), while the minimum (1.24 ton) was found from C_{1}. The maximum harvest index (44.82%) was recorded from C_{2} while the (44.76%) was found from C_{1}. The maximum number of nodules per plant (22.45) was recorded from C_{2}, while the minimum (20.60) was found from C_{1}.

The tallest plant ($18.61 \mathrm{~cm}, 35.33 \mathrm{~cm}, 42.42 \mathrm{~cm}, 57.05 \mathrm{~cm}$ and 69.59 cm) was recorded from S_{2} and the shortest plant $(16.03 \mathrm{~cm}, 31.40 \mathrm{~cm}, 37.53 \mathrm{~cm}, 49.81 \mathrm{~cm}$ and 60.93 cm) was observed from S_{5} at $20,30,40,50 \mathrm{DAS}$ and harvest. At 20,30, $40,50 \mathrm{DAS}$ and harvest the highest number of leaves per plant $(6.20,11.20,14.80$, 24.33 and 29.90) was recorded from S_{2} and the lowest $(4.53,7.61,12.05,19.36$ and 19.73) was observed from S_{5}. The highest plant population $/ \mathrm{m}^{2}$ (33.48) was recorded from S_{1} and the lowest (21.74) was observed from S_{5}. The maximum number of pods per plant (20.87) was recorded from S_{4} and the minimum (17.53) was observed from S_{1}. The maximum pod length $(6.95 \mathrm{~cm})$ was recorded from S_{2} and the minimum (6.04 cm) was observed from S_{5}. The maximum number of seeds per pod (7.94) was recorded from S_{2} and the minimum (7.14) was observed from S_{5}. The maximum weight of 1000 seeds $(22.40 \mathrm{~g})$ was recorded from $\mathrm{S}_{4}(21 \mathrm{~kg}$ seeds ha^{-1}) and the minimum $(18.26 \mathrm{~g})$ was ot served from S_{1}. The maximum seed yield per hectare (1.20 ton) was recorded from S_{2} and the minimum (0.91 ton) was observed from S_{5}. The maximum stover yield per hectare (1.49 ton) was recorded
from S_{2} and the minimum (1.12 ton) was observed from S_{5}. The maximum harvest index (45.05%) was recorded from S_{5} and the minimum (44.56%) was observed from S_{2}. The maximum number of nodules per plant (22.95) was recorded from S_{4} and the minimum (18.20) was observed from S_{1}.

At 20 DAS, the tallest plant $(20.62 \mathrm{~cm}, 38.15 \mathrm{~cm}, 45.56 \mathrm{~cm}, 60.29 \mathrm{~cm}$ and 73.65 $\mathrm{cm})$ was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the shortest plant ($13.40 \mathrm{~cm}, 26.60 \mathrm{~cm}, 32.14 \mathrm{~cm}$, $44.57 \mathrm{~cm}, 53.18 \mathrm{~cm}$) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. At $20,30,40,50 \mathrm{DAS}$ and at harvest, the highest number of leaves per plant $(6.58,12.35,15.32,27.85$ and 30.02$)$ was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the lowest $(3.22,7.09,11.03,16.53$ and 18.32$)$ number of leaves per plant was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The highest plant population $/ \mathrm{m}^{2}(35.46)$ was recorded from $C_{2} S_{1}$ and the lowest (15.27) was found from $C_{1} S_{5}$. The maximum number of pods per plant (22.88) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{4}$ and the minimum (14.17) was found from $C_{1} S_{1}$. The maximum pod length (7.39 cm) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the minimum (5.36 cm) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The maximum number of seeds per pod (8.22) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{1}$ and the minimum (6.33) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The maximum weight of 1000 seeds $(23.51 \mathrm{~g})$ was recorded from $\mathrm{C}_{2} \mathrm{~S}_{4}$ and the minimum $(16.29 \mathrm{~g})$ was found from $C_{1} S_{1}$. The maximum seed yield per hectare (1.24 ton) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the minimum (0.81 ton) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The maximum stover yield per hectare ($\cdot .55$ ton) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{2}$ and the minimum (1.01 ton) was found from $\mathrm{C}_{1} \mathrm{~S}_{5}$. The maximum harvest index (45.54%) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{5}$ and the minimum (44.50\%) was found from $\mathrm{C}_{2} \mathrm{~S}_{2}$. The maximum number of nodules per plant (23.60) was recorded from $\mathrm{C}_{2} \mathrm{~S}_{3}$ and the minimum (18.20) plant was found from $\mathrm{C}_{1} \mathrm{~S}_{1}$.

Considering the situation of the present experiment, further studies in the following areas may be suggested:

1. Such study is needed in different agro-ecological zones (AEZ) of Bangladesh for regional compliance and other performance.
2. Another experiment may be carried out with another seed rate for other cultivar.
3. Management practices may be included with seed rate for further study.

Chapter 6 References

REFERENCES

Ahmed, Z. U., Shaikh, M. A. Q., Khan, A. I. and Kaul, A. K. (1978). Evaluation of local, exotic and mutant germplasm of mungbean for varietal characters and yield in Bangladesh. SABRAO J. 10: p. 48.

Anonymous. (1982). Agricultural Year book of Bangladesh, Bangladesh Bureau of statistics, Statistical Division, Ministry of Finance and Planning, Government of the People's Republic or'Bangladesh p. 121.

Anonymous. (1989). Annual Report 1987-88. Bangladesh Agricultural Research Institute. Joydebpur, Gazipur. p. 133.

BARI. (2004). Annual Report, 2003-04. Bangladesh Agricultural Research; Institute. Joydebpur, Gazipur. p. 133.

BBS. (Bangladesh Bureau of Statistics). (2006). Monthly Statistical Bulletin. Statistics Division. Ministry of Planning. Government of the Peoples Republic of Bangladesh. Dhaka. p. 65.

Beech, D. F and Wood, I. W. (1978). Evaluation of mungbean under irrigation in northern Australia. Proc. of First Intl. Mungbean Symp. August 16-19. Los Banos, Philippines.p. 15.

Borah, U. K. (1994). Effect of weed control and fertilizer application on productivity of mungbean under rainfed condition. Annals Agril. Res. 15(4): 499-501.

Brathwaite, R. A. I. (1982). Bodic Bean re:ponses to changes in plant density. Agron. J. 74(4): 593-596.

Cagampang, I. C. Sampsom, O. F. and Micossa, J. C. (1977). Some studies on production mangement of mungbean in UPLB. in: The first IntI. Symp. on mungbean at UPLB laguna, Philippines. [Field Crop Abst. 1979, 33(1): 50.]

Edris, K. M., Islam, A. T. M. T., Chowdhury, M. S. and Haque, A. K. M. M. (1979). Detailed Soil Survey of Bangladesh Agricultural University Farm, Mymensingh, Dept. Soil Survey, Govt. People's Republic of Bangladesh. 118 p.

Edwin, L., Jamkhogin, L., Singh, A. I. (200;) Influence of sources and levels of phosphorus on growth and yield of green gram (Vigna radiata L. Wilczek). Legume Res., 28(1): 59-6i.

EI-Habbasha, K. M. Adam, S. M. and Rizk, F. A. (1996). Growth and yield of pea (Pisum Sativum) plant affected by plant density and foliar potassium application. Egyptian J. Hort. 23(1): 35-51.

FAO (Food and Agriculture Organization). (1988). Production Year Book. Food and Agricultural of the United Nations Rome, Italy. 42: 190-193.

FAO (Food and Agriculturc Organization). (1999). FAO Production Yearbook. Basic Data Unit. Statistic Division, FAO. Rome, Italy.

Gomez, K. H. and Gomez, A. A. (1984). Statistical Procedures for Agricultural Research. Second Edn. Wiley- Inter Science publication, JohnWiley and Sono, New York. p. 680.

Hamid, A. (1989). Nitrogen and carbon effect on the growth and yield performance of mungbean (Vigna radiata L., Wilczek). J. Agron. and Crop Sci. 161(1):1i-16.

Haque, M. M. (1995). Effect of plant population on the growth and yield of mungbean. Bangladesh J. Sci. and Inds Res., 30(1): 63-69.

Hasanuzzaman, M. (2001). Effect of plant population and Bio-fertilizer on growth and yield performance of two summer munbbean cultivars. M.S. Thesis, Dept. Agron, Bangladesh Agril. Univ, Mymensingh. pp. 109-114.

Hoq, M. A. and Hossain, A. (1981). Effect of plant density on yield and yield components in mungbean. Pakistan J. Agric. Res. 2(1): 29-32.

ISTA. (1985). International rules for seed testing. Seed Sci. Technol. 13(2): 309343.

Jain, Y. K., Arya, M. P. S. and Kalra, G. S. (1988). Effect of phosphorus doses on growth, yield and quality of summer mungbean (Vigna radiata) and soil nitrogen. Indian J. Agric. Res. 22(1):23-30.

Jewani, L. M and Saini, S. R. (1981). Summer mung technology. Indian Fag, 30(8): 73.

Kaul, A. (1982). Pulses in Bangladesh. BARC (Bangladesh Agricultural Researcin Council), Farmgate, Dhaka. p. 27 .

Khan, M. A. A. (1981). The effect of CO_{2} environment on the pattern of growth and development in rice and mustard. Ph.D. Dissertation. Royal Vet. And Agril Univ. Copenhagen. p. 104.

Maheshwari, S. K. Tomar, G. S. and Singh, L. (1974). Effect of varying row spacing and population on the yield and its components of greengram. Indian J. Agron. 7(2): 27-28.

Manpreet, S., Sekhon, H. S. Jagrup, S. (20C4). Response of summer mungbean (Vigna radiata L.) genotypes to different phosphorus levels. Environ. Ecol. 22(1): 13-17.

Milthorpe, F. L. and Moorby, J. (1974). An Introduction to Crop Physiology. Cambridge Univ. Press, London. pp. 152-179.

Mimber, S. M. (1993). Influence of plant density and number per hill on growth and yield of mungbeans cultivar walet. Agrivita. 16(2): 78-82. [CAB Abst. 1995.]

Miranda, G. V., Santos, I. C. Dos. Peluzio, J. M. and Santos, G. R. Dos. (1997). Effect of different plant densities on mungbeans and rice beans. Ohwi Ohashi Revista. 44(252): 241-248. [Fieid Crop Abst. 1998. 61(2): 137.]

Muesca, F. and Oria, D. V. (1981). Mungbean yield as affected by fertilizer rates and population density. SMARC Monitor. 2(4): 13. [Field Crop Abst. 1983. 36(1): 70.]

Neciosup, G. M. A. (1986). Preliminary population density trails of selected AVRDC mungbean cultivars. Tropical vegetable Information service (Taiwan). 2(1): pp (7-8). [Cited from Abst. on Trop. Agric. 1987. 12(10-12): 93].

Nigamananda, B. and Elamathi, S. (2007). Studies on the time of nitrogen, application foliar spray of DAP, and growth regulator on yield attributes, yield and economics of green gram (Vigna radiata L.). Intl J. Agril. Sci., $3(1): 168-169$.

Okigbo, B. N. (1979). Evaluation of plant interactions and productivity in complex mixtures as a basis for improve cropping system design. In: Proc. IntI. Workshop on Intercropping. ICRISAT, Huderabad, India, 10-13 Jan. pp. 155-179.

Panwar, J. D. S. and Sirohi, G. S. (1987). Studies on the effect of plant population of grain yield and its components in mungbean. Indian. J. Plant Physol. $30(4): 412-414$.

Patro, H. and Sahoo, P. N. (1994). Response of mungbean genotypes to phosphorus. Indian J. Pulses Res., 7(2): 191-192.

Pookpakdi, A. and Paparadilok, H. (1993). Response of genotypes of mungbean and black gram to planting dates and piant population densities. Kasetsart. J. Natural Sci. 27(4): 395-400. [CAB Abst. 1993-1994.;

Saini, A. D. and Das, K. (1979). Studies on growth and yield of three mungbean cultivars. Indian J. Plant Physiol. 22(2): 147-155.

Sarkar, M. A. R, Kabir, M. H, Begum, M. and Salam, M. A. (2004). Yield performance of mungbean as affected by planting date, variety and plant density. J. Agron. 3(1): 18-24.

Satish, K., Singh, R. C. and Kadian, V. S. (2003). Response of mungbear genotypes to phosphorus application. Indian J. Pulses Res., 16(1): 65-66.

Sekhon, H. S, Guriqbal Singh, Brar, J. S. and Singh, G. (2002). Effect of population density and planting geometry on the growth and yield of mungbean (Vigna radiata L. Wilczek) genotypes. Environ. Ecol. 20(4): 897-901. [CAB Abst. 2002/08-2003/10]

Shukla, S. K. and Dixit, R. S. (1996). Effects of Rhizobium inoculation, plant population and phosphorus on growth and yield of summer mungbean (Vigna radiata). Indian J. Agron. 41(4): 611-615.

Singh, A and Singh, O. (1987). Response of late sown seed rate and nitrogen. Indian J. Agron. 32(2): 91-93.

Singh, A. K. and Singh, N. P. (1995). Effect of varieties and seed rates on yield of mungbean and urdbean during summer. Indian J. Pulses Res. 8(1): 90-92 [Cited from CAB Abst. 1996-1998].

Singh, C. P. and Singh, H. P. (1988). Response of mungbean to plant population and planting pattern. Indian J. Agron. 33(3): 344-345.

Singh, C. P. and Singh, H. P. (1990). Response of mungbean to plant population and planting pattern. Narendra Deva J. Agrl. Res. 5(1): 122-124. [CAB Abst. 1993-1994]

Singh, K. B. and Malhotra, R. S. (1983). Intra-relationships between yield and yield components in mungbean. Indian J. Genetics. 30(2): 244-250.

Singh, K. N. Bali, A. S, Shah. M. N. and Khenday, B. A. (1991). Effect of spacing and seed rate on yield of greengram. Indian J. Agril. Sci. 61(5): 326-327.

Singh, R. C. Singh, M. Dahira, D. R. and Phogat, S. B. (1985). Effect of dates of sowing and seed rates on summer season urd bean. Indian J. Agron. 31(2): 187-188.

Sprent, J. I., Bradford, A. M. and Norton, C. (1977). Seasonal growth patterns in field beans (Vicia faba) as affected by population density. J. Agric. Sci. Cambridge. 88: 293-301.

Subramaniam, A. and Palaniappan, S. P. (1981). Effect of method of planting, plant density and phosphorus fertilization on yield of black gram in irrigated system. Madras Agril. J. 68(2): 96-99.

Talukder, M. A. M., Hashem, A. and Hamid, A. (1993). Effect of crop density and time of weeding on the performance of mungbean. Ann. Bangladesh Agric. $3(2): 883-891$.

Thakuria, K. and Saharia, P. (1990). Response of greengram genotypes to plant density and phosphorus levels in summer. Indian. J. Agron. 35(4): 431-432.

Tickoø, J. L., Naresh, C., Gangaiah, B., and Dikshit, H. K. (2006). Performance of mungbean (Vigna radiata) varieties at different row spacings and nitrogenphosphorus fertilizer levels. Indian J. Agril. Sci., 76(9): 564-565.

Tomar, S. S. and Tiwari, A. S. (1996). Response of green gram and black gram genotypes to plant density. Gujarat Ag, il. Univ. Res. J., 21(2): 88-92.

Tomar, S. S. Shrivastava, U. K. Sharma, R. K. Bhadouria, S. S. and Tomar, A. S. (1995). Physiological parameters of sunmer moong as affected by seed rate, moisture regime and phosphorus levels. JNKVV Zonal Agril. Res. Station. Legume Res. 18(2): 125-128.

Tomar, S. S., Tiwari, A. S. and Tomar, A. S. (1993). Effect of season and plant densities on yield and economics of mungbean, urdbean genotypes. Indian J. Pulses Res. 6(2): 155-160.

Trung, B. C. and Yoshida, S. (1985). Influence of planting density on the nitrogen nutrition and grain productivity of mungbean. Japanese J. Crop Sci. 54(3): 166-172.

Tsiung, N. T. (1978). Responses of mungbean to sowing date in sarwak. $1^{\text {st }}$ Intl. Mungbean Symp. AVRDC (Asian Vegetable Research and Development Centre), Taiwan: 205-209.

UNDP. (1988). Land Resources Appraisal of Bangladesh for Agricultural Development. Report 2: Agro-ecological Regions of Bangladesh, FAO, Rome. pp. 212, 577.

Vukadinovic, V. M., Calo, S. and Zuher, F. (1986). Multiple of factor affecting crop production archive fur Aciur and pfanzenbau and Bodenkunde, Bernbury, German Dem. Repub. 5-6: 321-332.

Wignell, A. O. (1983). Technical guideline for cereal seed testing, FAO, Rome. p. 17.

Williams, R. F. (1967). Estimation of leaf area for agronomic and plant physiological studies. Australian J. Agric. Res. 5(2): 235-246.

Appendix I. Experimental location on the map of Agro-ecological Zones of Bangladesh

Appendix II. The mechanical and chemical characteristics of soil of the experimental site as observed prior to examination (0-15 cm depth)

Mechanical composition :
Particle size constitution
Sand: 26%
Silt: 45\%
Clay: 29\%
Texture : Silty clay

Chemical composition :

Soil characters	Value
P^{H}	7.1
Organic matter	1.08%
Total Nitrogen	0.054%
Potassium	$0.27 \mathrm{meq} / 100 \mathrm{gm}$ soil
Calcium	$3.50 \mathrm{meq} / 100 \mathrm{gm}$ soil
Magnesium	$0.46 \mathrm{meq} / 100 \mathrm{gm}$ soil
Phosphorus	10.46 ppm
Sulphur	18 ppm
Boron	0.04 ppm
Copper	1.60 ppm
Iron	14 ppm
Manganese	36.80 ppm
Zinc	1.84 ppm

Source: Soil Resources Development Institute (SRDI), Khamarbari, Dhaka

Appendix III. Monthly recordes of temperature and rainfall of the experimental site during the period from April 2007 to June 2007

Source: Bangladesh Meterological Department (Climate Division), Agargao, Dhaka 1212

Appendix IV. Anslysis of variance of the data on plant height as influenced by different seed rates of mungbean and blackgram

Source of variation	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { freedom } \end{aligned}$	-4.				
		20 DAS	30 DAS	40 DAS	50. DAS	Atharvest
Replication	2	1.416	1.441	1.011	0.475	0.553
Crop (A)	1	53.280*	206.719*	291.346*	171.287*	308.610*
Error	2	2.476	8.679	13.709	2.939	6.188
Seed rate (B)	4	11.865**	14.453**	22.432**	42.140*	61.604**
Interaction ($\mathrm{A} \times \mathrm{B}$)	4	7.448*	41.285**	37.295**	34.707*	67.020**
Error	16	2.025	2.730	2.652	10.409	6.427

** Significant at 0.01 level of probability, * Significant at 0.05 level of probability

Appendix V. Analysis of variance of the data on number of leaves per plant as influenced by different seed rates of mungbean and blackgram

Source of variation	Degrees of freedom	- Nuniber of leavesiper plantat				
		20DAS	30 DAS	40. DAS	50 DAS	Atharyest
Replication	2	0.100	0.024	0.287	0.033	0.536
Crop (A)	1	13.615*	23.548**	3.421**	185.456**	201.709*
Error	2	0.475	0.249	0.018	0.004	3.607
Seed rate (B)	4	3.090**	10.758**	5.840**	19.585**	82.508**
Interaction ($\mathrm{A} \times \mathrm{B}$)	4	1.899**	0.708**	1.360*	4.895*	9.829*
Error	16	0.154	0.258	0.328	1.323	2.723

* Significant at 0.01 level of probability, *Significant at 0.05 level of probability

Appendix VI. Analysis of variance of the data on number of flowers per plant, number of pods per plant, pod length and number of seeds per pod as influenced by different seed rates of mungbean and blackgram

** Significant at 0.01 level of probability, * Significant at 0.05 level of probability

Appendix VII. Analysis of variance of the data on 1000 -seed weight, seed yield, harvest index and number of nodule per plant as influenced by different seed rates of mungbean and blackgram

* Significant at 0.01 level of probability, * Significant at 0.05 level of probability

