Genetic analysis of tomato (*Solanum lycopersicum* L.) and tomatillo (*Physalis ixocarpa* Brot.) genotypes based on their quality traits.

SHAMIM REZA

DEPARTMENT OF GENETICS AND PLANT BREEDING SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207

JUNE, 2016

Genetic analysis of tomato (*Solanum lycopersicum* L.) and tomatillo (*Physalis ixocarpa* Brot.) genotypes based on their quality traits.

BY

SHAMIM REZA

REGISTRATION NO. 15-06942

A Thesis submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN

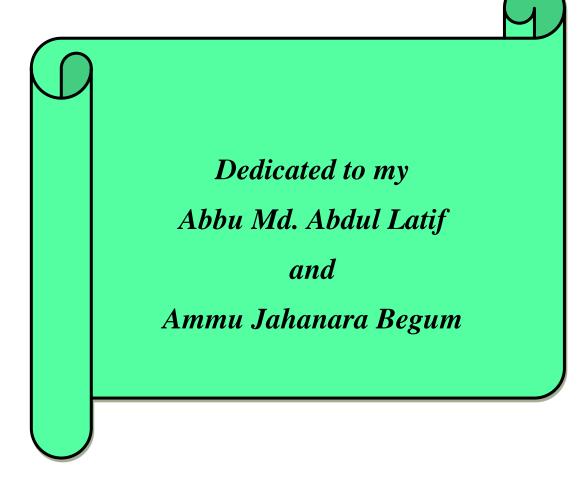
GENETICS AND PLANT BREEDING

SEMESTER: JANUARY-JUNE, 2016

Approved by:

(Dr. Naheed zeba) Prof. Supervisor (Dr. Md. Sarowar Hossain) Prof. Co-Supervisor

(Prof. Dr. Jamilur Rahman) Chairman Examination Committee


Naheed Zeba, Ph.D Professor Department of Genetics and Plant Breeding Sher-e-Bangla Agricultural University Sher-e-Bangla Nagar, Dhaka-1207, Bangladesh Tel: 88-02-9140770 Mobile: +8801913091772 E-mail: <u>naheed0359@yahoo.com</u>

CERTIFICATE

This is to certify that thesis entitled, "Genetic analysis of tomato (Solanum lycopersicum L.) and tomatillo (Physalis ixocarpa Brot.) genotypes based on their quality traits." submitted to the faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of **MASTER OF SCIENCE IN GENETICS AND PLANT BREEDING**, embodies the result of a piece of bona fide research work carried out by Shamim Reza, Registration No.: 15-06942 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that such help or source of information, as has been availed of during the course of this investigation has been duly been acknowledged by him.

Dated: June, 2016 Place: Dhaka, Bangladesh (Prof. Dr. Naheed Zeba) Supervisor

Full word	Abbreviations	Full word	Abbreviation
Agricultural	Agril.	Number	No.
Agriculture	Agric.	Negative logarithm of	pН
And others	et al.	hydrogen ion	
Applied	App.	concentration	
Bangladesh	BARI	(-log[H+])	
Agricultural Research		Nutrition	Nutr.
Institute		Perchloric Acid	$HClO_4$
Bangladesh Bureau of	BBS	Percentage	%
Statistics		Plant Genetic Resource	PGRC
Biology	Biol.	Centre	
Calcium ion	Ca^{2+}	Review	Rev.
Centimeter	Cm	Physiology	Physiol.
Environment	Environ.	Research and Resource	Res.
Etcetera	etc.	Serial	S1.
Food and Agricultural	FAO	Science	Sci.
Organization		Soil Resource	SRDI
Gram	G	Development Institute	
Gram per liter	g/L	Technology	Technol.
Horticulture	Hort.	That is	i.e.
International	Intl.	Ton	Т
Journal	<i>J</i> .	Videlicet (namely)	viz.
Milligram per liter	mg/L	United States of	U.S.A.
Milligram(s)	Мg	America	
Milliliter	mĹ	Ultraviolet	UV

Some commonly used abbreviations

ACKNOWLEDGEMENTS

At first the author expresses his profound gratitude to Almighty Allah for his never-ending blessing to complete this work successfully. It is a great pleasure to express his reflective gratitude to his respected parents and all family members, who entiled much hardship inspiring for prosecuting his studies, thereby receiving proper education.

The author would like to express his earnest respect, sincere appreciation and enormous thankfulness to his reverend supervisor, Prof. Dr. Naheed Zeba, Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, for her scholastic supervision, continuous encouragement, constructive suggestion and unvarying inspiration throughout the research work and for taking immense care in preparing this manuscript.

The author wishes to express his gratitude and best regards to his respected Co-Supervisor, Prof. Dr. Md. Sarowar Hossain, Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, for his cooperation, encouragement and valuable teaching.

The author is highly thankful to his honorable teacher Prof. Dr. Jamilur Rahman Chairman, Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, for his valuable teaching, encouragement and cooperation during the whole study period.

The author feels to express his heartfelt thanks to his honorable teachers, Prof. Dr. Md. Shahidur Rashid Bhuiyan, Dr. Firoz Mahmud, Associate Prof. Dr. Md. Abdur Rahim and all the honorable course instructors of the Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, for their valuable teaching, direct and indirect advice, encouragement and cooperation during the period of the study.

The author is thankful to all of the academic officers and staff of the Department of Genetics and Plant Breeding, Sher-e-Bangla Agricultural University, Dhaka, for their continuous cooperation throughout the study period.

He would like to thank all of his friends and well wishers who always inspired him during his research specially Md Shawon, Abdullah Al Noman, Md Sajjadur Rahman, Md Muktader Rashid Bhuiyan, Fariha Apon Naz, Md Mezhbahur Rahman, who helped him with their valuable suggestions and directions during the preparation of this thesis paper.

He can never repay the debt of his sisters, brothers, and all other well wishers for their inspiration, constant encouragement and sacrifice for his higher education specially his brother Jahangir Alom and brother's wife Ms Farida Esmeen Kemy whose inspiration guided him toward the achievement of his goal. He expresses his immense gratefulness to all of them who assisted and inspired him to achieve higher education and regret for his inability for not to mention every one by name.

June 2016

The Author

LIST OF CONTENTS

CHAPTER	TITLES	PAGE NO.
	ABBREVIATIONS	Ι
	ACKNOWLEDGEMENTS	Ii
	CONTENTS	iii
	LIST OF TABLES	vii
	LIST OF PLATES	vii
	LIST OF FIGURE	viii
	LIST OF APPENDICES	ix
	ABSTRACT	Х
CHAPTER I	INTRODUCTION	1
CHAPTER II	REVIEW OF LITERATURE	6
2.1	Tomatillo and Tomato	7
2.2	Nutritional analysis	10
2.3	Lycopene	11
2.4	Vitamin-C	14
2.5	Brix (%)	16
2.6	pH	18
2.7	Moisture percentage	20
CHAPTE III N	MATERIALS AND METHODS	23
3.1	Experimental site	23
3.2	Planting materials	23
3.3	Climate and soil	24
3.4	Seed bed preparation and raising of seedling	24
3.5	Design and layout of the experiment	28
3.6	Land Preparation	28
3.7	Transplanting of seedlings	28

CHAPTER TITLES PAGE NO. Manure and fertilizers application 29 3.8 3.9 Intercultural operations 29 Harvesting and processing 3.10 28 Antioxidant and nutritional traits 3.11 30 3.12 Determination of Brix percentage 30 3.13 Determination of Vitamin-C 30 3.14 Determination of Lycopene content 30 3.15 Determination of pH of the flesh 31 3.16 Determination of moisture percentage 31 3.17 Determination of dry matter 31 3.18 Statistical analysis 32 CHAPTER IV **RESULTS AND DISCUSSION** 33 4.1 Mean, Range and Analysis of Variance 33 4.1.1 Fruit pH 33 4.1.2 Vitamin-C 32 4.1.3 Dry matter content (g/100g)37 4.1.4 Brix (%) 37 4.2.5 Lycopene 37 4.1.6 Moisture percentage (%) 42 4.1.7 Analysis of variance (ANOVA) 42 4.2 **Estimates of Genetic Parameters** 45 4.2.1 Estimates of Variance Components 45 4.2.2 Estimates of Genotypic and Phenotypic 47 Coefficient of Variation 4.2.3 Estimates of Heritability and Genetic Advance 50 4.3 Estimates of Heritability and Genetic Advance 55 4.3.1 56 Phenotypic correlation 4.3.2 Phenotypic correlation 58 4.4 Path Coefficient Analysis 61

LIST OF CONTENTS (CONT'D)

CHAPTER	TITLES	PAGE NO.
CHAPTER V	SUMMARY AND CONCLUSION	63
REFERENCE	8	67
APPENDICES		79

LIST OF CONTENTS (CONT'D)

FIGU NC		PAGE NO.
1.	Name and origin of tomatillo & tomato genotypes used in the present study	24
2.	Doses of manures and fertilizers used in the study	29
3.	Range, mean CV (%) and standard deviation of six tomatillo and tomato genotypes	34
4.	Mean performance of six genotypes of tomatillo and tomato in respect of seven important characters	35
5.	Analysis of variance for different characters	45
6.	Estimation of genetic, phenotypic and environmental variance in seven traits	48
7.	Estimation of phenotypic and genotypic coefficient variation	50
8.	Estimation of heritability and genetic advance	55
9.	Phenotypic correlation coefficients among different pairs of yield and yield contributing characters for different genotype	61
11.	Genotypic correlation coefficients among different pairs of yield and yield contributing characters for different genotype	63
12.	Partitioning of genotypic correlations into direct (bold) and indirect effects of seven important characters by path analysis	66

LIST OF TABLE

LIST	OF	PLATES	
------	----	--------	--

PLATE NO.	TITLE	PAGE NO.
1.	Raising of seedling, Trans-planting seedlings to field, Watering to plant, growing up seedling vigorously, flowering of tomato and tomatillo plant, fruit setting of tomatillo and tomato.	25
2.	Harvesting fruits, Brix and Nutritional test.	26
3.	Vitamin-C test, all experiment samples (G_1-G_6) , SAU tomatillo-1, SAU tomatillo-2, PI003, PI004, BARI Tomato 2, BARI Tomato 11 (Cherry) and genotypes (G_1-G_6) on a same dish.	27

APPEND NO.	IX TITLE	PAGE NO.
1	Variation in mean performance of six genotypes on p^{H} of Tomatillo and tomato	36
2	Variation in mean performance of six genotypes of Vitamin C of Tomatillo and tomato	37
3	Variation in mean performance of six genotypes of dry matter content (g/100g) of Tomatillo and tomato	39
4	Variation in mean performance of six genotypes of brix% of Tomatillo and tomato	40
5	Variation in mean performance of six genotypes of lycopene (mg/100g) at 472 nm in tomatillo and tomato	41
6	Variation in mean performance of six genotypes of lycopene (mg/100g) at 502 nm in tomatillo and tomato	42
7	Variation in mean performance of six genotypes of lycopene (mg/100g) at 502 nm in tomatillo and tomato	44
8	Genotypic and phenotypic coefficient of variability	51
9	Heritability and genetic advance over mean	57
10	Genotypic and Phenotypic Correlation Coefficient of ten characters with moisture	64

LIST OF FIGURE

LIST OF APPENDICES

APPENDIX NO.	TITLE	PAGE NO.
I.	Map showing the experimental site under the study	78
II.	Monthly records of air temperature, relative humidity, rainfall and sunshine hours during the period from October 2013 to March 2014	79
III.	The mechanical and chemical characteristics of soil of the experimental site as observed prior to experimentation (0 - 15 cm depth)	79
IV.	Experiment plot in the farm of Sher-e-Bangla Agricultural University	82
V.	Layout of the experimental plot.	83

Genetic analysis of tomato (*Solanum lycopersicum* L.) and tomatillo (*Physalis ixocarpa* Brot.) genotypes based on their quality traits

By

SHAMIM REZA

ABSTRACT

An experiment was conducted to observe the performances of four tomatillo and two tomato genotypes under three different replications in same growing season. The factorial experiment included four tomatillo and two tomato genotypes viz. G₁ (SAU tomatillo-1), G₂ (SAU tomatillo-2), G₃ (PI003), G₄ (PI004), G₅ (BD-7306), G₆ (BD-7761) were outlined in Randomized Complete Block Design (RCBD). 20 days aged seedlings were transplanted to main field. The results showed that both the different tomatillos and tomatoes genotypes genotype G6 had the highest pH (4.90) and the lowest pH was found in the genotype G2 (3.80). The genotype G6 had the maximum vitamin C (26.58 mg/100g) whereas the minimum (0.00 mg/100g) was found from G3. The highest dry matter content was observed by the genotype G1 (1.20 g) and the lowest dry matter content was found in G5 (0.30 g). The highest brix % (5.800%) was observed in G4 whereas the lowest (2.617%) from G5. The genotype G5 recorded the highest lycopene content of the fruit (20.61 mg), while the lowest was observed by the genotype G4 (0.2833 mg) in case of 472 nm. In case of 502 nm the highest lycopene content of fruit was observed in genotype G1 (26.62 mg) and the lowest was observed in the genotype G4 (0.07667 mg). The maximum moisture percentage was checked in the genotype G5 (95.0 %) and the minimum was checked in the genotype G1 (77.67 %). The conducted study disclosed that high heritability coupled with high expected genetic advance as percent of means were observed in case of p^{H} (95.05 % and 21.72 % respectively), vitamin C (97.69 % and 273.45 % respectively), dry matter content (87.39 % and 97.26 % respectively), brix (98.33 % and 65.26 % respectively), lycopene at 472 nm (97.88 % and 303.84 %) and lycopene at 502 nm (98.78 % and 251.89 %) respectively indicating good response to selection for these characters. Therefore, based on the quality performance of tomatillo and tomato genotypes, G1 could be selected for high dry matter content, high lycopene and more brix% in the fruit. But for vitamin C as well as fruit p^{H} genotypes G6 could be selected. For bulky, that means with high moisture percentage as well as with high lycopene content, G5 could be selected.