EFFECT OF POTASSIUM AND GA3 ON GROWTH AND YIELD OF BROCCOLI

MST. ASHRIN JAHAN

DEPARTMENT OF HORTICULTURE SHER-E-BANGLA AGRICULTURAL UNIVERSITY DHAKA-1207

EFFECT OF POTASSIUM AND GA3 ON GROWTH AND YIELD OF BROCCOLI

BY

MST. ASHRIN JAHAN

REG. NO. : 11-04264

A Thesis

Submitted to the Faculty of Agriculture Sher-e-Bangla Agricultural University, Dhaka in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE (MS)

IN

HORTICULTURE

SEMESTER: JANUARY-JUNE, 2017

Approved by:

Prof. Md. Hasanuzzaman Akand

Department of Horticulture Sher-e-Bangla Agricultural University Dhaka-1207 **Supervisor** Prof. Dr. Md. Nazrul Islam Department of Horticulture Sher-e-Bangla Agricultural University Dhaka-1207 Co-supervisor

Prof. Dr. Mohammad Humayun Kabir Chairman Examination Committee

DEPARTMENT OF HORTICULTURE

Sher-e-Bangla Agricultural University Sher-e-Bangla Nagar, Dhaka-1207

Memo No: SAU/HORT/.....

Date:

CERTIFICATE

This is to certify that the thesis entitled 'EFFECT OF POTASSIUM AND GA₃ ON GROWTH AND YIELD OF BROCCOLI' submitted to the Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka, in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN HORTICULTURE, embodies the results of a piece of bona fide research work carried out by MST. ASHRIN JAHAN, Registration No. 11-04264 under my supervision and guidance. No part of the thesis has been submitted for any other degree or diploma.

I further certify that any help or source of information, received during the course of this investigation has been duly acknowledged.

Dated: June, 2017 Dhaka, Bangladesh

Prof. Md. Hasanuzzaman Akand Department of Horticulture Sher-e-Bangla Agricultural University Dhaka-1207

Supervisor

DEDICATED

ТО

MY BELOVED PARENTS

ACKNOWLEDGEMENTS

All praises to the Almightly and Kindfull trust on to "Almighty Allah" for His never-ending blessing, the author deems it a great pleasure to express her profound gratefulness to her respected parents, who entiled much hardship inspiring for prosecuting her studies and receiving proper education.

The author feels delighted to express her heartiest sence of gratitude and immense indebtedness to her Supervisor **Prof. Md. Hasanuzzaman Akand**, Department of Horticulture, Sher-e-Bangla Agricultural University (SAU), Dhaka, for his scholastic and intellectual guidance, cooperation, constructive criticism, valuable suggestion and instructions in carrying out the research work and preparation of thesis, without his intense co-operation this work would not have been possible.

The author feels proud to express her deepest respect, sincere appreciation and immense indebtedness to her Co-Supervisor **Prof. Dr. Md. Nazrul Islam**, Department of Horticulture, SAU, Dhaka, for his scholastic and continuous guidance, constructive criticism and valuable suggestions during the entire period of course and research work and preparation of this thesis.

The author expresses her sincere respect and sence of gratitude to Chairman **Prof. Dr. Mohammad Humayun Kabir**, Departement of Horticulture, SAU, Dhaka for his valuable suggestions and cooperation during the study period. The author also expresses her heartfelt thanks to all the teachers of the Department of Horticulture, SAU, for their valuable teaching, suggestions and encouragement during the period of the study.

The author expresses her sincere appreciation to her husband, brother, sisters, relatives, well wishers and friends for their inspiration, help and encouragement throughout the study period.

The Author

June, 2017

EFFECT OF POTASSIUM AND GA3 ON GROWTH AND YIELD OF BROCCOLI

BY

MST. ASHRIN JAHAN

ABSTRACT

The experiment was conducted in the Horticulture Farm, Sher-e-Bangla Agricultural University, Dhaka during November 2016 to March 2017. The experiment consisted of two factors, such as Factor A: Potassium fertilizer (three levels) as K₀: 0 kg K₂O/ha (control), K₁: 75 kg K₂O/ha, K₂: 100 kg K₂O/ha and Factor B: Gibberellic acid-GA₃ (four levels) as G₀: 0 ppm GA₃ (control), G₁: 80 ppm GA₃, G₂: 100 ppm GA₃, G₃: 120 ppm GA₃. The two factorial experiment was laid out in Randomized Complete Block Design with three replications. Potassium and GA₃ influenced significantly on most of the studied parameters. In case of potassium, the highest curd yield (22.54 t/ha) was recorded from K_2 and the lowest curd yield (18.98 t/ha) was found from K₀. For GA₃, G₃ performed the highest curd yield (22.66 t/ha) and the lowest (18.64 t/ha) was from G_0 . For combined effect, the highest curd yield (24.83 t/ha) was found from K_2G_3 and the lowest (16.57 t/ha) from K_0G_0 . The highest benefit cost ratio (2.28) was noted from the combination of K_2G_3 and the lowest was found (1.55) from K₀G₀. So, 100 kg potassium per hectare with 120 ppm GA₃ can be used for broccoli production.

CHAPT	ER TITLE	PAGE NO.
	ACKNOWLEDGEMENTS	i
	ABSTRACT	ii
	LIST OF CONTENTS	iii
	LIST OF TABLES	vi
	LIST OF FIGURES	vii
	LIST OF PLATES	viii
	LIST OF APPENDICES	ix
	SOME COMMONLY USED ABBREVIATIONS	x
Ι	INTRODUCTION	01-03
II	REVIEW OF LITERATURE	04-11
	2.1 Influence of potassium fertilizer on crop growth and y	vield 04
	2.2 Influence of GA ₃ on crop growth and yield	06
III	MATERIALS AND METHODS	12-24
	3.1 Description of the experimental site	12
	3.1.1 Experimental period	12
	3.1.2 Description of experimental site	12
	3.1.3 Climatic condition	12
	3.1.4 Characteristics of soil	13
	3.2 Experimental details	13
	3.2.1 Planting materials	13

LIST OF CONTENTS

LIST OF CONTENTS (Cont'd)

CHAPTE	R TITLE	PAGE NO.
	3.2.2 Treatment of the experiment	13
ź	3.2.3 Design and layout of the experiment	14
	3.2.4 Preparation of the main field	14
	3.2.5 Application of manure and fertilizers	14
	3.3 Growing of crops	16
	3.3.1 Collection of seeds	16
	3.3.2 Raising of seedlings	16
	3.3.3 Transplanting of seedlings	17
	3.3.4 Collection, preparation and application of growth reg	ulator 17
	3.3.5 Intercultural operation	19
	3.4 Harvesting	20
	3.5 Data collection	21
	3.6 Statistical analysis	24
	3.7 Economic analysis	24
IV	RESULTS AND DISCUSSION	25-53
2	4.1 Plant height	25
2	4.2 Number of leaves per plant	27
2	4.3 Leaf length	30
2	4.4 Leaf breadth	34
2	4.5 Days to 1 st curd initiation	34
4	4.6 Length of stem	38

CHAPTER TITLE	PAGE NO.
4.7 Diameter of stem	42
4.8 Length of root	42
4.9 Weight of Primary curd	43
4.10 Diameter of primary curd	43
4.11 Dry matter content of plant	44
4.12 Dry matter content of curd	47
4.13 Number of secondary curd per plant	47
4.14 Weight of secondary curd	48
4.15 Curd yield per plot	48
4.16 Curd yield per hectare	50
4.17 Economic analysis	52
V SUMMARY AND CONCLUSION	54-57
REFERENCES	58-63
APPENDICES	64-69

LIST OF CONTENTS (Cont'd)

LIST OF TABLES

TABLE TITLE		PAGE NO.
1.	Dose and method of application of fertilizers in broccoli field	14
2.	Effect of different levels of potassium and GA ₃ on plant height at different days after transplanting (DAT) and at harvest of broccoli	26
3.	Combined effect of different levels of potassium and GA ₃ on plant height at different days after transplanting (DAT) and at harvest of broccoli	28
4.	Combined effect of different levels of potassium and GA_3 on number of leaves per plant at different days after transplanting (DAT) and at harvest of broccoli	31
5.	Combined effect of different levels of potassium and GA_3 on leaf length at different days after transplanting (DAT) and at harvest of broccoli	33
6.	Effect of different levels of potassium and GA_3 on leaf breadth at different days after transplanting (DAT) and at harvest of broccoli	35
7.	Combined effect of different levels of potassium and GA_3 on leaf breadth at different days after transplanting (DAT) and at harvest of broccoli	36
8.	Effect of different levels of potassium and GA ₃ on yield contributing characters and yield of broccoli	40
9.	Combined effect of different levels of potassium and GA_3 on yield contributing characters and yield of broccoli	41
10.	Effect of different levels of potassium and GA ₃ on yield contributing characters and yield of broccoli	45
11.	Combined effect of different levels of potassium and GA_3 on yield contributing characters and yield of broccoli	46
12.	Cost and return of broccoli cultivation as influenced by different levels of potassium and GA ₃	53

LIST	OF	FIGURES
------	----	---------

FIGURE	TITLE	PAGE NO.	
1.	Layout of the experimental plot	15	
2.	Effect of different levels of potassium on number of leaves per plant of broccoli	29	
3.	Effect of different levels of GA ₃ on number of leaves per plant of broccoli	29	
4.	Effect of different levels of potassium on leaf length of broccoli	32	
5.	Effect of different levels of GA ₃ on leaf length of broccoli	32	
6. Effect of different levels of potassium on days to 1st curd initiation of broccoli		37	
7.	Effect of different levels of GA_3 on days to 1st curd initiation of broccoli	37	
8.	Combined effect of different levels of potassium and GA_3 on days to 1st curd initiation of broccoli	39	
9.	Effect of different levels of potassium on curd yield per plot of broccoli	49	
10.	Effect of different levels of GA ₃ on curd yield per plot of broccoli	49	
11.	Combined effect of different levels of potassium and GA ₃ on curd yield per plot of broccoli	51	

PLATE	PLATE TITLE	
1.	Seed sowing on seedbed for the experiment	16
2.	Raised seedlings for the experiment	17
3.	3. Transplanted seedling on main field with tagging	
4.	4. Gibberellic acid applied on broccoli plant	
5.	Watering after potassium application	19
6.	Maturity stage of broccoli plants	20
7.	Data collection for the experiment	21

LIST OF PLATES

LIST OF APPENDICES

APPENDIX	APPENDIX TITLE				
I.	Monthly record of air temperature, relative humidity, rainfall and sunshine hour of the experimental site during the period from November 2016 to March 2017	64			
II.	Soil characteristics of experimental field as analyzed by Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka	64			
III.	Analysis of variance of the data on plant height of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA_3				
IV.	IV. Analysis of variance of the data on number of leaves per plant of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA ₃				
V.	V. Analysis of variance of the data on leaf length of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA ₃				
VI.	Analysis of variance of the data on leaf breadth of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA_3	66			
VII.	Analysis of variance of the data on days to 1^{st} curd initiation, stem length, stem diameter, and roots length and roots fresh weight per plant of broccoli as influenced by different levels of potassium and GA ₃				
VIII.	Analysis of variance of the data on primary curd diameter and primary curd weight and secondary curd number and weight of broccoli as influenced by different levels of potassium and GA ₃	67			
IX.	Per hectare production cost of broccoli	68			

FULL WORD	ABBREVIATION
Agro-Ecological Zone	AEZ
Bangladesh Bureau of Statistics	BBS
Co-efficient of variation	cv
Days After Transplanting	DAT
and others	et al.
Etcetera	etc
Food and Agriculture Organization	FAO
Gibberellic Acid	GA_3
Journal	J.
Least Significance Difference	LSD
Muriate of Potash	MoP
Sher-e-Bangla Agricultural University	SAU
Soil Resources Development Institute	SRDI
Triple Superphosphate	TSP

SOME COMMONLY USED ABBREVIATIONS

INTRODUCTION

CHAPTER I

CHAPTER I

INTRODUCTION

Broccoli (*Brassica oleracea* var. *italica*) is an important cole crop and it has high nutritional and good commercial value (Yoldas *et al.*, 2008). Generally it is consumed mostly all over the world for its nutritional value as a source of various compounds such as vitamins, minerals, antioxidants, as well as its anticancer properties (Umar *et al.*, 2013 and Pizetta *et al.*, 2005). The edible portion of the broccoli plant consists of tender stem and unopened flower buds. The plants form a kind of head consisting of green buds and thick fleshy flower stalk. The terminal head rather loose, green in color and the flower stalks are longer than cauliflower (Bose *et al.*, 2002). It can be harvested for a wide period of time than cauliflower (Thompson and Kelly, 1988). Unlike cauliflower, broccoli produces smaller flowering shoots (secondary curds) from the leaf axils after harvest of main apical curds which are also edible. Broccoli is a minor vegetable in Bangladesh but is one of the important cole crops in Europe and USA and it is a commercial crop in India (Tindall, 1983 and Nonnecke, 1989).

In Bangladesh broccoli was introduced about two decades ago. Broccoli can be harvested for a wide period of time than the cauliflower (Thompson and Kelly, 1988). Broccoli is an Italian vegetable; however, due to increase in its popularity, there is a trend to increase cultivation by farmers, as well as consumption by consumers. Broccoli attracted more attention due to its multifarious use and it's great nutritional value (Salunkhe and Kadam, 1998; Talalay and Fahey, 2001; Rangkadilok *et al.*, 2004). Different factors may influence the growth, yield and quality of broccoli. Among them potassium and plant growth regulators can play an important role for increasing the production of broccoli in Bangladesh (Manjit Singh *et al.*, 2011).

The average yield of broccoli is low in Bangladesh compared to other countries of the world and the low yield of this crop however is not an indication of low yielding potentiality of this crop (Islam *et al.*, 2010). However, low yield may be attributed to a number of reasons viz. unavailability of quality seeds of high yielding varieties, fertilizer management, disease and insect infestation and improper or limited irrigation facilities. Among different factors manures and fertilizers generally play an important role. Deficiency of soil nutrient is now considered as one of the major constraints to successful upland crop production in Bangladesh (Islam and Noor, 1982). Previous research has indicated that nutrients have important effects on the production and quality of broccoli (Belec *et al.*, 2001; Moniruzzaman *et al.*, 2007; Ambrosini *et al.*, 2015).

Broccoli is a short duration crop, for that easily soluble fertilizer like as potassium. Potassium is also one of the important essential macro elements for the normal growth and development of plant. The potassium requirements vary depending upon the nutrient content of the soil (Bose and Som, 1986). According to Islam *et al.* (2010), Potassium is the most important nutrient for broccoli productivity. Increased plant resistance to diseases and drought stress, increased vegetable quality and increased efficiency of non-K nutrient use are the most important effects of K on plants (Armstrong, 1998). Broccoli is an important vegetable but have lacking and divergent information about potassium (K) fertilization in soil with a high K content and reported the highest yields of 12.5 t ha⁻¹ with 160 kg ha⁻¹ (Silva *et al.*, 2016).

Plant growth regulators (PGRs) are organic compounds which are capable of modifying growth. It plays an essential role in many aspects of plant growth and development (Patil *et al.*, 1987 and Dharmender *et al.*, 1996). Many reports so far been made to indicate a promising results on yield and quality of broccoli and other crops due to the use of different bio-chemical substances, such as Napthaline acetic acid (NAA), Gibberelic acid (GA₃), Indole acetic acid (IAA) etc. (Senthelhas *et al.*, 1987; Tadzhiryan, 1990; Tomar *et al.*, 1991). Plant height, curd formation and curd size of curd can be increased with foliar application of plant growth regulators. GA₃ have a positive role on curd formation and curd

size of broccoli (Sharma and Mishra, 1989). Application of GA₃ stimulates morphological characters like plant height, number of leaves, curd diameter, thickness of curd as well as the weight of the curd. The concentrations of these chemicals interacting with the environmental conditions play an important role in modifying the growth and yield components of broccoli. Application of GA₃ at 100 ppm produced the tallest plants, the largest curds and highest curd yields (Vijay and Ray, 2000). The optimum proportion of potassium fertilizer and GA₃ enhances the growth and development of broccoli as well as ensures the availability of other essential nutrients for the plant. In the above mention situation the experiment was conducted with the following objectives-

Objectives:

- To determine the optimum dose of potassium fertilizer on growth and yield of broccoli
- To find out the optimum level of GA₃ for obtaining higher yield of broccoli
- To find out the suitable combination of potassium and GA₃ for ensuring the higher growth and yield of broccoli.

CHAPTER II

REVIEW OF LITERATURE

CHAPTER II

REVIEW OF LITERATURE

Borccoli is an important vegetable crop in Bangladesh and specially valued for its nutrition value. Management of fertilizer especially potassium is the important factor that greatly affects the growth, development and yield of broccoli. Recently, there has been global realization of the important role of PGR's in increasing crop yield. So it is important to assess the effect of potassium and GA₃ for the best growth and yield of broccoli. However, very limited research reports on the performance of broccoli in response to potassium and GA₃ have been done in various part of the world including Bangladesh and the work so far done in Bangladesh is not adequate and conclusive. However, some of the important and informative works conducted at home and abroad in this aspect re reviewed under the following headings:

2.1 Influence of potassium fertilizer on crop growth and yield

Fernandez *et al.* (2018) conducted an experiment with Avenger and Legacy cultivars including four levels of N, P_2O_5 and K_2O as factors, arranging a total of 12 treatments. Results showed that Avenger and Legacy got the highest yields, 19.0 and 12.2 t N/ha, respectively with doses of 55 kg K₂O/ha.

Silva *et al.* (2016) carried out an experiment in Jaboticabal City, São Paulo, Brazil, aiming to evaluate the effect of different K doses (0, 50, 100, 150 and 200 kg/ha K₂O, in potassium chloride) on the yield of broccoli 'BRO 68' in Rhodic Eutrudox soil with a high K content. The broccoli responded positively but differently to potassium fertilization. The maximum yield of broccoli (12,476 kg/ha) was obtained with 160 kg/ha K₂O.

Uddain *et al.* (2010) conducted an experiment at Horticulture Farm of Sher-e-Bangla Agricultural University, Dhaka to study the effect of potassium on growth and yield of broccoli. Four levels of potassium (K) fertilizers viz. $K_0 = 0$ kg K/ha, $K_1 = 50$ kg K/ha, $K_2 = 75$ kg K/ha and $K_3 = 100$ kg/ha were used in the experiment. The experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The highest plant height (55.82 cm), stem diameter (5.61 cm), number of leaves (13.64), leaf length (46.03 cm) at 60 DAT, shoot length (40.14 cm), root length (30.94 cm), fresh shoot weight (794.4 g), fresh root weight (84.42 g), main curd weight (260.0 g), curd diameter (17.52 cm), number of secondary curd (4.0), weight of secondary curd (166.0 g) and curd yield (14.19 t/ha) were recorded from K_3 .

Wang *et al.* (2007) conducted a pot experiment to determine the effects of N, P and K on yield and quality of broccoli and reported that K was the most important element for yield. Additive effects were observed on yield and sourcesink vitamin C [ascorbic acid] content when K was applied together with N or N + P. Application of N + P gave 110.8% higher yields than N alone. N application advanced the harvest. Significant positive correlations were found between yield and dry weight of leaves and plant size. They suggested that to obtain high yields and quality, N, P and K applications should be balanced.

Yang *et al.* (2006) conducted a field experiment for two years to study the effect of nitrogen, phosphorus and potassium on growth and yield of broccoli. Treatments comprised: 60:40:30, 120:80:50, 150:80:70 and 200:100:80 kg NPK/ha. They observed that plant height was increased through stem length, leaf length and breadth with increasing NPK and the highest plant height and number of leaves were obtained with 200:120:80 kg NPK/ha, respectively. The highest yield per plot was also obtained from the same treatment.

Brahma *et al.* (2002) carried out a field experiment to evaluate the effects of NPK fertilizers on the nutrient uptake, yield and quality of broccoli cv.KTS-1. The treatment comprised application of 80: 30: 20, 100: 60: 40, 150: 80: 60 and 200: 120: 80 kg NPK/ha. They reported that NPK at 200 : 120 : 80 kg /ha resulted in the highest values for head diameter (19.52 cm); cull head number (7.09); head yield (13.42 t/ha); cull head yield (4.70 t/ha); total yield (18.11 t/ha); leaf N (3.90%) and K (2.75%) content; and protein (3.36%), total

chlorophyll (0.46 mg/g) and ascorbic acid content (128.05 mg/kg/ha) and K (72.37 kg/ha).

Guan and Chen (2001) reported that there was a significant effect of N and K on growth and yield of broccoli especially N on growth and K on yield. Higher amount of nitrogen increase plant height, leaf length and stem diameter at least at a certain range. On the other hand, higher amount of potassium contribute higher curd weight, curd diameter and secondary curd number per plant at least at a certain range of K application.

2.2 Influence of GA₃ on crop growth and yield

Reza *et al.* (2015) carried out an experiment to find out the influence of GA_3 on growth, yield and yield contributing characters of broccoli (*Brassica oleracea var. Italica*). Four levels of GA_3 *viz.* G_1 : Control, G_2 : 25 ppm GA_3 , G_3 : 50 ppm GA_3 and G_4 : 75 ppm GA_3 was used in the experiment. The maximum plant height (31.5 cm), number of leaves (16.6/plant), number of main fingers (12.0/main curd), main curd length (21.3 cm), main curd diameter (19.3 cm), main curd weight (668.0 g/plant) and yield (24.5 t/ha) was found from the application of 50 ppm GA_3 , while the minimum from control. It was revealed that, 50 ppm GA_3 gave maximum yield/ha (24.5 tons). It was also found that application of more than 50 ppm GA_3 reduced the yield of broccoli.

Thara *et al.* (2013) conducted an experiment at Horticulture Research Station, Mondouri, Bidhan Chandra Krishi Viswavidyalaya, Monhanpur, Nadia, West Bengal, India to determine the effect of GA₃, NAA and their combinations (applied as seedling dipping) on growth, yield and quality improvement of sprouting broccoli. The results clearly indicated significantly good response of the growth regulator applications on growth, yield and quality attributes of sprouting broccoli. GA₃ 30 mg/l + NAA 30 mg/l treatment (T₁₀) showed best result with respect to head weight, head diameter, plant height, plant spread, projected yield, number of sprouts/plant and sprout weight. GA₃ 80 mg/l treatment (T₂) took least number of days for head initiation, while GA₃ 80 mg/l treatment (T₃) proved to be the most effective among all treatments and required minimum days for head initiation to head maturity. Plant growth regulator treatments significantly improved carotene, total sugar and total chlorophyll content, with highest increase have been recorded in case of T₁ (GA₃ 40 mg/l), whereas maximum ascorbic content has been estimated with T₉ (GA₃ 20 mg/l + NAA 20 mg/l).

Manjit Singh *et al.* (2011) conducted a field experiment during the winter season on sprouting broccoli cultivar Palam Samridhi at Horticultural Research Centre and Department of Horticulture, H.N.B Garhwal University, Srinagar (Garhwal) Uttarakhand, India. 4 weeks old seedlings were treated before transplanting by dipping their roots for 24 h in different concentration of GA₃ (gibberellic acid), kinetin and their combinations solutions. The GA₃, kinetin and their combination significantly influenced the growth performance, yield and quality characters of sprouting broccoli. GA₃ 30 mg/L + kinetin 30 mg L⁻¹ treatment gave maximum growth and yield of sprouting broccoli whereas, highest vitamin A content found with 40 mg/L GA₃ and vitamin C was found maximum in GA₃ 20 mg/L + kinetin 20 mg/L dipping.

Studies on influence of GA, NAA and CCC at three different concentrations on different growth parameters of cabbage (cv. Pride of India) were studied by Lendve *et al.* (2010) found that application of GA_3 50 ppm was found significantly superior over most of the treatments in terms of number of the leaves, plant spread, and circumference of stem, left area, fresh and dry weight of the leaves, shape index of head, length of root, fresh and dry weight of root. Except treatment GA_3 75 ppm, gave better results for days required for head initiation and head maturity.

The effect of GA_3 and/or NAA (both at 25, 50, 75 or 100 ppm) on the yield and yield parameters of cabbage (cv. Pride of India) was investigated by Dhengle and Bhosale (2008) in the field at Department of Horticulture, college of Agriculture, Parbhani. The highest yield was obtained with GA_3 at 50 ppm

followed by NAA at 50 ppm (332.01 and 331.06 q/ha, respectively). Combinations and higher concentrations of plant growth regulators proved less effective.

The growth and flowering response of a cold-requiring crop cauliflower (Brassica oleracea var. botrytis cv. '60 day') to a range of temperatures under 10 hour photoperiod and to growth regulator application were investigated by the Guo et al. (2004). Endogenous gibberellin (GA₃) concentrations were also assessed under these treatments. Flowering and growth of the inflorescence stalk were correlated with plant developmental stage at the time of a vernalizing cold treatment. Temperature and its duration also affected flowering and inflorescence development. The most effective temperature for inflorescence induction was 10° C. Flowering did not occur in non-vernalized plants (25^oC) even though they had been treated with GA₃. Application of GA₃ promoted inflorescence stalk elongation greatly in vernalized plants (10°C), but less so in partially vernalized plants (15 or 20^oC). Paclobutrazol sprayed at the 8-9 leaf stage significantly suppressed inflorescence stalk length and slightly delayed flower bud formation and anthesis. Vernalization at 10^oC increased endogenous GA₃ content in both leaves and the inflorescence stalk irrespective of GA₃ treatment.

Vijay and Ray (2000) carried out an experiment that thirty day old cauliflower (cv. Pant Subhra) seedlings that were transplanted into experimental plots treated with 50 or 100 ppm GA_3 , 5 or 10 ppm IBA, or 200 ppm NAA at 15 and 30 days of growth. The results clearly revealed that GA_3 at 100 ppm produced the tallest plants, the largest curds and highest curd yields.

Nidhi-Arora *et al.* (1997) conducted an experiment with Seeds of cauliflower (Brassica oleracea var. botrytis) cultivars Snowball 16 and Hisar 1 were cultured on MS medium without growth regulators, and cotyledons of resulting 5 to 6-day-old seedlings were cultured on 6 different modified MS media. Of the BAP [benzyladenine] concentrations, 2.0 mg/litre was best for shoot regeneration.

Addition of IAA (0.1 mg/litre) in combination with BAP (1.0, 2.0 and 5.0 mg/litre) showed that shoot regeneration was maximum at 0.1 mg IAA + 1.0 mg BAP/litre. The two cultivars differed significantly for percentage regeneration and Snowball 16 responded the best to in vitro culture.

Dharmender *et al.* (1996) conducted an experiment to find out the effect of GA_3 or NAA (both at 25, 50 or 75 ppm) on the yield of cabbage (cv. Pride of India) in the field at Jobner, Rajstan, India. They recorded the highest yield following treatment with GA_3 at 50 ppm followed by NAA at 50 ppm (557.54 and 528.66 q/ha respectively). They also reported that combination and higher concentrations of plant growth regulators proved less effective and were uneconomic in comparison to control.

Aditya and Fordham (1995) carried out an experiment in the field and greenhouse to study the effects of cold exposure and GA_3 during early growth stages on the date of flowering of the tropical cauliflower cv. Early Patnai and the temperate cv. Lawyna. Flowering in cv. Early Patnai was advanced by approximately 25 days following vernalization (1 week at 10^{0} C) of 3 week old plants. They reported that one week old plants failed to respond to this treatment suggesting juvenile phase lasting up to about the 6 leaf stage in this cultivar.

Islam *et al.* (1993) determined the effective concentration of NAA and GA₃ for promoting growth, yield and ascorbic acid content of cabbage. They used 12.5, 25, 50 and 100 ppm of both the NAA and GA₃ and applied in three different methods i.e. seedling soaked for 12 hours, spraying at 15 and 30 days of transplanting. They found that ascorbic acid content increased up to 50 ppm when sprayed twice with both the growth regulator, while its content was declined afterwards. They also added that two sprays with 50 ppm GA₃ was suitable both for higher yield and ascorbic acid content of cabbage.

Reddy (1989) reported that exogenous application of GA_3 and Urea either alone or in combination enhanced curd size as well as yield. Greatest plant height at curd formation (58.2 cm), curd diameter at maturity (26.8 cm) and increase yield over the control (164%) were obtained with two application of GA_3 .

Sharma and Mishra (1989) stated that plant height, curd formation and curd size of cauliflower can increase with foliar application of plant growth regulator. Several experiments were conducted to increase the yield of cauliflower. GA_3 and IAA have a positive effect on curd formation and size of cauliflower.

Muthoo *et al.* (1987) showed that the foliar application of different concentration of GA₃, NAA and molybdenum increased the average fresh and dry weight of leaves. Curd and yield of cauliflower among the individual treatments, gibberellic acid proved to be the best for the vegetative growth of curd and yield of cauliflower (q/ha) followed by naphthalene acetic acid. The effect of treatment combination $G_2N_2M_2$ (100 ppm GA₃, 120 ppm NAA and 0.2% molybdenum) gave best result for all parameters of growth and yield.

Patil *et al.* (1987) conducted an experiment in a field trial with the cultivar Pride of India applied GA₃ and NAA each at 25, 50, 75 and 100 ppm one month after transplanting. Both the GA₃ and NAA increased the plant height significantly. The maximum plant height and head diameter and head weight were noticed with GA₃ at 50 ppm followed by NAA at 50 ppm. Significant increase in number of outer and inner leaves was noticed with both GA₃ and NAA. Head formation and head maturity was 13 and 12 days earlier with 50 ppm GA₃. Maximum number of leaves and maximum yield (23.83 t/ha) were obtained with 50 ppm GA₃.

Mishra and Singh (1986) conducted an experiment with all possible combinations of the levels of nitrogen (0, 0.5, and 1.0 per cent), boron (0, 0.1, 0.2 per cent) and GA_3 (0, 25, and 50 ppm) in the form of Urea, boric acid, and GA_3 were sprayed on snowball-16 cauliflower respectively. Results revealed that there was significant increase in growth characters namely plant height, diameter of stem, number of leaves per plant, weight of plant, curd yield and nitrogen

content in stem and leaves due to N, B and GA₃ applications. However, length of stem was increased only by GA₃ spray.

Islam (1985) conducted an experiment at the Bangladesh Agricultural University Farm, Mymensingh with applying various growth regulators (CCC, GA₃, NAA and IBA) at 30 days after transplanting of 32 day old seedlings, CCC decreased the plant height, size of loose leaves, diameter of cabbage of head and finally the yield. GA₃ increased the plant height, number of loose leaves per plant, size of leaf and finally the yield.

Yabuta *et al.* (1981) reported that application of GA_3 had significantly increased marketable weight, petiole length, and number of leaves, leaf area and height of many leafy vegetables.

As per the above cited reviews, it may be concluded that potassium and GA_3 are the important factors for attaining optimum growth and as well as highest yield of broccoli. The literature revealed that the effects of potassium and GA_3 have not been studied well and have no definite conclusion for the production of broccoli in the agro climatic condition of Bangladesh.

CHAPTER III

MATERIALS AND METHODS

CHAPTER III

MATERIALS AND METHODS

The experiment was conducted to find out the effect of potassium and GA_3 on growth and yield of broccoli. The materials and methods that were used for conducting the experiment i.e. location, soil and climate condition of experimental site, materials used for the experiment, design of the experiment, data collection and data analysis procedure have been presented in this chapter.

3.1 Description of the experimental site

3.1.1 Experimental period

The present experiment was conducted within the time period of November 2016 to March 2017.

3.1.2 Description of experimental site

The experiment was conducted at the Horticulture farm of Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh. The experimental site is situated between $23^{0}74'$ N latitude and $90^{0}35'$ E longitude and at an elevation of 8.4 m from sea level (Anon., 1989).

3.1.3 Climatic condition

The climate of experimental site is subtropical, characterized by three distinct seasons, the monsoon from November to February and the pre-monsoon period or hot season from March to April and the monsoon period from May to October. The monthly average temperature, humidity and rainfall during the crop growing period were collected from Weather Yard, Bangladesh Meteorological Department, and presented in Appendix I. During the experimental period the maximum temperature (31.4^oC) was recorded in the month of March 2017 while the minimum temperature (12.4^oC) in the month of January 2017. The highest humidity (78%) was recorded in the month of November, 2016, whereas the highest rainfall (30 mm) was recorded in the month of February 2017.

3.1.4 Characteristics of soil

The soil of the experimental field belongs to the Tejgaon series under the Agroecological Zone, Madhupur Tract (AEZ-28) and the General Soil Type is Deep Red Brown Terrace Soils. A composite sample was made by collecting soil from several spots of the field at a depth of 0-15 cm before the initiation of the experiment. The collected soil was air-dried, grind and passed through 2 mm sieve and analyzed at Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka for some important physical and chemical properties. The soil was having a texture of sandy loam with pH and Catayan exchange capacity 5.6 and 2.64 meq 100 g soil⁻¹, respectively. The results showed that the soil composed of 27% sand, 43% silt, 30% clay and organic matter 0.88%, which have been presented in Appendix II.

3.2 Experimental details

3.2.1 Planting materials

The seeds of hybrid broccoli (*Brassica oleracea var. italica*) namely Confident was used as planting materials for this experiment.

3.2.2 Treatment of the experiment

The experiment consisted of two factors:

Factor A: Potassium fertilizer (three levels) as

- i K₀: 0 kg K₂O/ha (control)
- ii. K_1 : 75 kg K_2 O/ha
- iii. K₂: 100 kg K₂O/ha

Factor B: Gibberellic acid-GA₃ (four levels) as

- i. $G_0: 0 \text{ ppm } GA_3 \text{ (control)}$
- ii. G_1 : 80 ppm GA_3
- iii. G₂: 100 ppm GA₃
- iv. G₃: 120 ppm GA₃

There were 12 (3 × 4) treatments combination such as K_0G_0 , K_0G_1 , K_0G_2 , K_0G_3 , K_1G_0 , K_1G_1 , K_1G_2 , K_1G_3 , K_2G_0 , K_2G_1 , K_2G_2 and K_2G_3 .

3.2.3 Design and layout of the experiment

The two factorial experiment was laid out in Randomized Complete Block Design (RCBD) with three replications. The total area was divided into three equal blocks. Each block was divided into 12 plots where 12 treatments combination were allotted at random. There were 36 unit plots and the size of each plot was $1.2 \text{ m} \times 2.0 \text{ m}$. The distance between two blocks and two plots were 1.0 m and 0.5 m, respectively. The layout of the experiment is shown in Figure 1.

3.2.4 Preparation of the main field

The selected plot of the experiment was opened in the 2^{nd} week of November 2016 with a power tiller, and left exposed to the sun for a week. Subsequently cross ploughing was done five times with a country plough followed by laddering to make the land suitable for transplanting the seedlings. All weeds, stubbles and residues were eliminated from the field. Finally, a good tilth was achieved. The soil was treated with insecticides (Cinocarb 3G @ 4 kg/ha) at the time of final land preparation to protect young plants from the attack of soil inhibiting insects such as cutworm and mole cricket.

3.2.5 Application of manure and fertilizers

Manures and fertilizers were applied to the experimental plot considering the recommended fertilizer doses (BARI, 2014) of broccoli.

Fertilizers Dose/ha		Application (%)			
and Manures		Basal	10 DAT	30 DAT	50 DAT
Cowdung	20 tonnes	100			
Urea	300 kg		33.33	33.33	33.33
TSP	200	100			
MoP	As per treatment		33.33	33.33	33.33

Table 1. Dose and method of application of fertilizers in broccoli field

The total amount of cowdung and TSP was applied as basal dose at the time of land preparation. The total amount of urea and MoP was applied in three equal installments at 10, 30 and 50 day after transplanting.

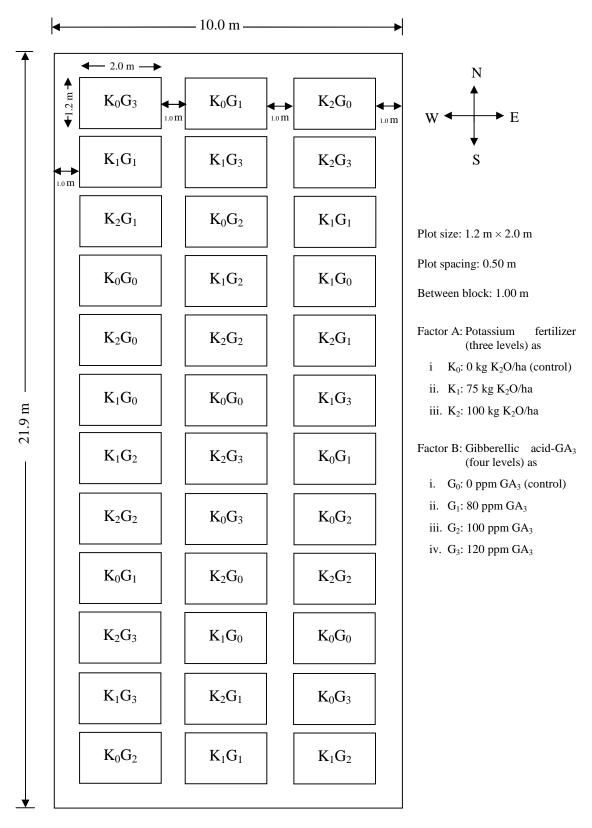


Figure 1. Layout of the experimental plot

3.3 Growing of crops

3.3.1 Collection of seeds

The seeds of hybrid broccoli namely Confident was collected from Siddique Bazar market, Dhaka.

3.3.2 Raising of seedlings

The seedlings were raised at the Horticultural Farm, SAU, Dhaka under special care in a 3 m \times 1 m size seed bed. The soil of the seed bed was well ploughed with a spade and prepared into loose friable dried masses and to obtain good tilth to provide a favorable condition for the vigorous growth of young seedlings. Weeds, stubbles and dead roots of the previous crop were removed. The seedbed was dried in the sun to destroy the soil insect and protect the young seedlings from the attack of damping off disease. To control damping off disease Cupravit fungicide were applied. Decomposed cowdung was applied to the prepared seedbed at the rate of 10 t/ha. Ten (10) grams of seeds were sown in seedbed on November 02, 2016. After sowing, the seeds were covered with the finished light soil. At the end of germination shading was done by polythene sheet over the seedbed to protect the young seedlings from scorching sunshine and heavy rainfall (Plate 1). Light watering, weeding was done as and when necessary to provide seedlings with ideal condition for growth (Plate 2).

Plate 1. Seed sowing on seedbed for the experiment

Plate 2. Raised seedlings for the experiment

3.3.3 Transplanting of seedlings

Healthy and uniform seedlings of 33 days old seedlings were transplanting in the experimental plots on 04 December, 2016 (Plate 3). The seedlings were uploaded carefully from the seed bed to avoid damage of root system. To minimize the damage to the roots of seedlings, the seed beds were watered one hour before uprooting the seedlings. Transplanting was done in the afternoon. The seedlings were watered immediately after transplanting. Seedlings were sown in the plot with maintaining distance between row to row was 60 cm and plant to plant was 40 cm. As a result there are 10 seedlings were accommodated in each plot according to the design of the plot size at 2.0 m \times 1.2 m. The young transplanted seedlings were shaded by banana leaf sheath during day time to protect them from scorching sunshine up to 7 days until they were set in the soil. They (transplants) were also planted in the border of the experimental plots for gap filling if necessary.

3.3.4 Collection, preparation and application of growth regulator

Plant growth regulator Gibberellic Acid (GA_3) was collected from Hatkhola Road, Dhaka. A 1000 ppm stock solution of GA_3 was prepared by dissolving 1 g of it in a small quantity of ethanol prior to dilution with distilled water in one

Plate 3. Transplanted seedling on main field with tagging

litre of volumetric flask. The stock solution was used to prepare the required concentration for different treatment i.e. 80 ml of this stock solution was diluted in 1 litre of distilled water to get 80 ppm GA₃ solution. In a similar way, 100 ppm and 120 ppm stock solutions were diluted to 1 litre of distilled water to get 100 ppm and 120 ppm solution. Control solution also prepared only by adding a small quantity of ethanol with distilled water. GA₃ as per treatment were applied at three times 15, 30 and 45 days after transplanting by a mini hand sprayer (Plate 4).

Plate 4. Gibberellic acid applied on broccoli plant

3.3.5 Intercultural operation

After raising seedlings, various intercultural operations such as gap filling, weeding, earthing up, irrigation pest and disease control etc. were accomplished for better growth and development of the broccoli seedlings.

3.3.5.1 Gap filling

The transplanted seedlings in the experimental plot were kept under careful observation. Very few seedlings were damaged after transplanting and such seedling were replaced by new seedlings from the same stock. Replacement was done with healthy seedling having a boll of earth which was also planted on the same date by the side of the unit plot. The transplants were given shading and watering for 7 days for their proper establishment.

3.3.5.2 Weeding

The hand weeding was done 15, 30 and 45 days after transplanting to keep the plots free from weeds.

3.3.5.3 Irrigation

Light watering was given by a watering can at every morning and afternoon after transplanting. Following transplanting and it was continued for a week for rapid and well establishment of the transplanted seedlings. Beside this a routine irrigation was given at 3 days intervals (Plate 5).

Plate 5. Watering after potassium application

3.3.5.4 Earthing up

Earthing up was done at 20 and 40 days after transplanting on both sides of rows by taking the soil from the space between the rows by a small spade.

3.3.5.5 Pest and disease control

Insect infestation was a serious problem during the period of establishment of seedling in the field. In spite of Cirocarb 3G applications during final land preparation, few young plants were damaged due to attack of mole cricket and cut worm. Cut worms were controlled both mechanically and spraying Darsban 29 EC @ 3%. Some plants were infected by *Alternaria* leaf spot diseases caused by *Alternaria brassicae*. To prevent the spread of the disease Rovral @ 2 g per liter of water was sprayed in the field. The diseased leaves were also collected from the infested plant and removed from the field. Birds pest such as nightingales (Bulbuli) were seen visiting the broccoli field very frequently. The birds found to puncture the newly initiated curd and were controlled by striking a kerosene tin of metallic container frequently during day time.

3.4 Harvesting

Harvesting of the broccoli was not possible on a certain or particular date because the curd initiation as well as curd at marketable size in different plants were not uniform. Only the marketable size curds were harvested with fleshy stalk by using as sharp knife (Plate 6). Before harvesting of the broccoli curd, compactness of the curd was tested by pressing with thumbs.

Plate 6. Maturity stage of broccoli plants

3.5 Data collection

Five plants were randomly selected from the middle rows of each unit plot except yields of curds, which was recorded plot wise. Data were collected in respect of the following parameters to assess plant growth; yield attributes and yields as affected by different treatments of this experiment (Plate 7). Data on plant height, number of leaves and length of largest leaf were collected at 20, 30, 40 and 50 days after transplanting (DAT) and at harvest. All other yield contributing characters and yield parameters were recorded during harvest and after harvest.

Plate 7: Data collection for the experiment

3.5.1 Plant height

Plant height was measured from sample plants by using meter scale in centimeter from the ground level to the tip of the longest leaf and mean value

was calculated. Plant height was also recorded at 10 days interval starting from 20 days after transplanting (DAT) and continued upto 50 DAT and at harvest to observe the growth rate of plants.

3.5.2 Number of leaves per plant

The total number of leaves per plant was counted from each selected plant. Data were recorded as the average of 5 plants selected at random of each plot at 10 days interval starting from 20 DAT and continued upto 50 DAT and at harvest.

3.5.3 Length of leaf

The length of largest leaf was counted from each selected plant. Data were recorded as the average of 5 plants selected at random of each plot at 10 days interval starting from 20 DAT and continued upto 50 DAT and at harvest.

3.5.4 Breadth of leaf

The breadth of largest leaf was counted from each selected plant. Data were recorded as the average of 5 plants selected at random of each plot at 10 days interval starting from 20 DAT and continued upto 50 DAT and at harvest.

3.5.5 Days to 1st curd initiation

Each plant of the experiment plot was kept under close observation to assess days of curd initiation. Total number of days from the date of transplanting to the curd initiation was calculated and recorded.

3.5.6 Stem length

Stem length was taken from the ground level to base of the curd during harvesting with a meter scale and was expressed in centimeter (cm).

3.5.7 Stem diameter

Stem diameter was measured at the point where the central stem was cut off. The diameter of the stem was recorded in three dimensions with scale and the average of three figures was taken into account in centimeter (cm).

3.5.8 Root length

Root length was measured from five randomly selected plant and their average were calculated and expressed in centimeter.

3.5.9 Primary curd weight

The curds from sample plants were harvested, cleaned and weighted by weighing machine and mean values was recorded and express in gram.

3.5.10 Primary curd diameter

The curds from sample plants were sectioned vertically at the middle position with a sharp knife. The primary curd diameter was measured in centimeter (cm) with a meter scale as the horizontal distance from one side to another side of the widest part of the sectioned curd and mean value was recorded.

3.5.11 Dry matter content of plant

At first plant parts of selected plant were collected, cut into pieces and was dried under sunshine for a 3 days and then dried in an oven at 70° C for 72 hours until constant weight. The sample was then transferred into desiccators and allowed to cool down at room temperature. The final weight of the sample was taken.

3.5.12 Dry matter content of curd

At first curds of selected plant were collected, cut into pieces and was dried under sunshine for a 3 days and then dried in an oven at 70° C for 72 hours. The sample was then transferred into desiccators and allowed to cool down at room temperature. The final weight of the sample was taken.

3.5.13 Number of secondary curds per plant

The total number of secondary curds per plant was counted from each selected plant. Data were recorded as the average of 5 plants at random of each plot.

3.5.14 Secondary curds weight

The secondary curds from sample plants were harvested, cleaned and weighted. The weight of every secondary curd from each plant was weighted by weighing machine and added them in plant wise and finally means values was calculated and recorded.

3.5.15 Curd yield per plot

Curd yield per plot was recorded by multiplying average curd yield per plant with total number of plant within a plot and was expressed in kilogram (kg) and recorded plot wise.

3.5.16 Curd yield per hectare

The curd yield per hectare was measured by converted total curd yield per plot into yield per hectare and was expressed in ton (t).

3.6 Statistical analysis

The data obtained for different characters were statistically analyzed to find out the significance of the difference for different levels of potassium and GA₃ on growth and yield contributing characters of broccoli. The mean values of all the recorded characters were evaluated and analysis of variance was performed by the 'F' (variance ratio) test. The significance of the difference among the treatment combinations of means was estimated by Duncan's Multiple Range Test (DMRT) at 5% level of probability (Gomez and Gomez, 1984).

3.7 Economic analysis

The cost of production was analyzed in order to find out the most economic combination of different levels of potassium and GA_3 for broccoli cultivation. All input cost included the cost for lease of land and interests on running capital in computing cost of production. The interests were calculated @ 12% in simple rate. The market price of broccoli was considered as local market for estimating the cost and return. Economic analyses were done according to the procedure of Alam *et al.* (1989). The benefit cost ratio (BCR) was calculated as follows:

Gross return per hectare (Tk.)

Benefit cost ratio (BCR) =

Total cost of production per hectare (Tk.)

CHAPTER IV

RESULTS AND DISCUSSION

CHAPTER IV

RESULTS AND DISCUSSION

The experiment was conducted to find out the effect of potassium and GA_3 on growth and yield of broccoli. The analyses of variance (ANOVA) of the data on different growth and yield parameters are presented in Appendix III-IX. The results have been presented and discussed with the help of table and graphs and possible interpretations given under the following heads:

4.1 Plant height

Plant height of broccoli at 20, 30, 40, 50 DAT (days after transplanting) and at harvest showed significant differences due to different levels of potassium (Table 2 and Appendix III). At 20, 30, 40, 50 DAT and at harvest, the tallest plant (22.23, 36.84, 52.87, 65.06 and 70.78 cm, respectively) was found from K_2 (100 kg K_2O/ha) which was statistically similar (21.88, 36.55, 52.51, 64.44 and 69.81 cm, respectively) to K_1 (75 kg K_2O/ha), while the shortest plant (18.28, 31.41, 47.19, 57.01 and 62.13 cm, respectively) was recorded from K_0 (0 kg K_2O/ha i.e. control condition) at the same days. Generally plant height increased with the application of potassium upto a certain level in broccoli. Uddain *et al.* (2010) reported similar findings from their study.

Different levels of GA₃ varied significantly in terms of plant height of broccoli at 20, 30, 40, 50 DAT and at harvest (Table 2 and Appendix III). At 20, 30, 40, 50 DAT and at harvest, the tallest plant (22.02, 36.93, 53.08, 65.11 and 70.98 cm, respectively) was observed from G₃ (120 ppm GA₃) which was statistically similar (21.88, 36.30, 52.58, 64.33 and 70.09 cm, respectively) to G₂ (100 ppm GA₃) and closely followed (20.41, 34.45, 50.65, 61.82 and 67.12 cm, respectively) by G₁ (80 ppm GA₃), while the shortest plant (18.87, 32.04, 47.10, 57.41 and 62.11 cm, respectively) was recorded from G₀ (0 ppm GA₃ i.e. control condition) at same data recording days. Sharma and Mishra (1989) reported that plant height increased with foliar application of GA₃.

Treatmonte	Plant height (cm) at				
Treatments	20 DAT	30 DAT	40 DAT	50 DAT	At harvest
Levels of potassium	<u>m</u>				
K_{0}	18.28 b	31.41 b	47.19 b	57.01 b	62.13 b
K ₁	21.88 a	36.55 a	52.51 a	64.44 a	69.81 a
K ₂	22.23 a	36.84 a	52.87 a	65.06 a	70.78 a
LSD(0.05)	0.748	1.502	1.202	2.126	2.439
Level of significance	0.01	0.01	0.01	0.01	0.01
Levels of GA ₃					
G_0	18.87 c	32.04 c	47.10 c	57.41 c	62.11 c
G ₁	20.41 b	34.45 b	50.65 b	61.82 b	67.12 b
G ₂	21.88 a	36.30 a	52.58 a	64.33 a	70.09 a
G_3	22.02 a	36.93 a	53.08 a	65.11 a	70.98 a
LSD(0.05)	0.863	1.734	1.387	2.455	2.817
Level of significance	0.01	0.01	0.01	0.01	0.01
CV(%)	8.92	9.31	6.79	7.85	7.26

Table 2. Effect of different levels of potassium and GA3 on plant height atdifferent days after transplanting (DAT) and at harvest of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA₃ in terms of plant height of broccoli at 20, 30, 40, 50 DAT and at harvest (Table 3 and Appendix III). At 20, 30, 40, 50 DAT and at harvest, the tallest plant (24.66, 40.61, 56.30, 68.81 and 74.55 cm, respectively) was recorded from K_2G_3 (100 kg K_2O /ha and 120 ppm GA₃) treatment combination and the shortest plant (16.97, 30.04, 44.81, 50.74 and 54.52 cm, respectively) was recorded from K_0G_0 (0 kg K_2O /ha and 0 ppm GA₃ i.e. control condition) treatment combination at same days.

4.2 Number of leaves per plant

Statistically significant variation was recorded in terms of number of leaves per plant of broccoli at 20, 30, 40, 50 DAT and at harvest due to different levels of potassium (Figure 2 and Appendix IV). At 20, 30, 40, 50 DAT and at harvest, the highest number of leaves per plant (7.70, 13.58, 20.47, 23.55 and 24.16, respectively) was observed from K_2 which was statistically similar (7.10, 13.35, 19.90, 23.02 and 23.57, respectively) to K_1 , while the lowest number (5.30, 11.73, 16.05, 18.27 and 19.01, respectively) was attained from K_0 at the same days of observation.

Number of leaves per plant of broccoli at 20, 30, 40, 50 DAT and at harvest varied significantly due to different levels of GA₃ (Figure 3 and Appendix IV). At 20, 30, 40, 50 DAT and at harvest, the highest number of leaves per plant (7.11, 14.04, 19.87, 22.89 and 23.58, respectively) was observed from G₃ which was statistically similar (7.07, 13.53, 19.56, 22.69 and 23.37, respectively) to G₂ and closely followed (6.59, 12.74, 18.64, 21.24 and 21.95, respectively) by G₁, while the lowest number (6.04, 11.22, 17.17, 19.62 and 20.09, respectively) was recorded from G₀ at same data recording days. Data revealed that number of leaves per plant increased with the application of gibberellic acid in broccoli. Lendve *et al.* (2010) found that application of 50 ppm GA₃ was found significantly superior in terms of number of the leaves of broccoli.

Tractice enter	Plant height (cm) at				
Treatments	20 DAT	30 DAT	40 DAT	50 DAT	At harvest
K_0G_0	16.97 g	30.04 g	44.81 e	50.74 e	54.52 d
K_0G_1	17.95 fg	31.18 fg	47.55 d	59.19 cd	65.26 c
K ₀ G ₂	19.29 ef	32.43 e-g	47.59 d	57.86 d	63.21 c
K ₀ G ₃	18.90 ef	31.99 fg	48.79 d	60.23 cd	65.53 c
K_1G_0	20.43 de	34.43 d-f	48.85 d	60.87 cd	65.46 c
K ₁ G ₁	21.48 cd	36.61 b-d	52.54 bc	62.98 bc	68.09 bc
K ₁ G ₂	23.11 ab	36.95 b-d	54.52 ab	67.62 ab	72.81 ab
K ₁ G ₃	22.51 bc	38.20 a-c	54.15 a-c	66.29 ab	72.87 ab
K ₂ G ₀	19.22 ef	31.66 fg	47.64 d	60.62 cd	66.34 c
K_2G_1	21.79 b-d	35.55 с-е	51.88 c	63.30 bc	68.01 bc
K ₂ G ₂	23.23 ab	39.53 ab	55.65 a	67.52 ab	74.24 a
K ₂ G ₃	24.66 a	40.61 a	56.30 a	68.81 a	74.55 a
LSD(0.05)	1.495	3.004	2.403	4.253	4.879
Level of significance	0.05	0.05	0.05	0.05	0.05
CV(%)	8.92	9.31	6.79	7.85	7.26

Table 3. Combined effect of different levels of potassium and GA₃ on plant height at different days after transplanting (DAT) and at harvest of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

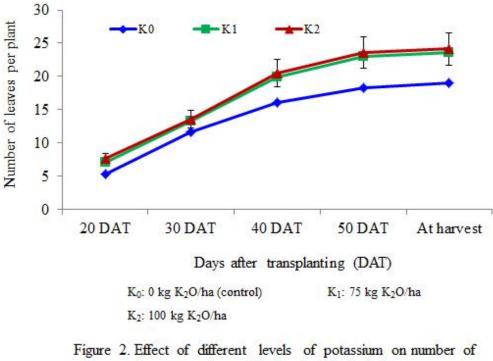
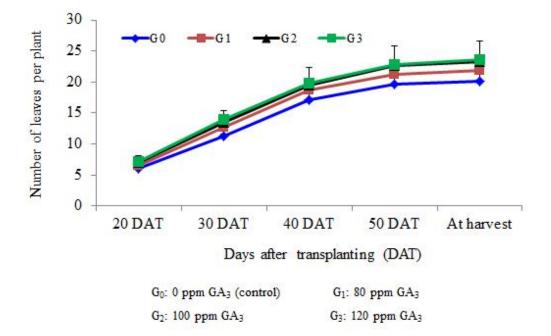
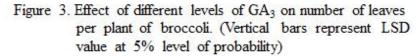




Figure 2. Effect of different levels of potassium on number of leaves per plant of broccoli. (Vertical bars represent LSD value at 5% level of probability)

Combined effect of different levels of potassium and GA_3 showed statistically significant differences in terms of number of leaves per plant of broccoli at 20, 30, 40, 50 DAT and at harvest (Table 4 and Appendix IV). At 20, 30, 40, 50 DAT and at harvest, the maximum number of leaves per plant (8.67, 15.13, 22.40, 25.73 and 26.44, respectively) was recorded from K_2G_3 treatment combination and the minimum number (4.88, 10.27, 14.80, 17.60 and 18.12, respectively) was recorded from K_0G_0 treatment combination at same days.

4.3 Leaf length

Leaf length of broccoli at 20, 30, 40, 50 DAT and at harvest varied significantly due to different levels of potassium (Figure 4 and Appendix V). At 20, 30, 40, 50 DAT and at harvest, the longest leaf (16.63, 26.12, 37.40, 45.94 and 47.32 cm, respectively) was found from K_2 which was statistically similar (16.34, 25.69, 36.47, 44.06 and 45.33 cm, respectively) to K_1 , while the shortest leaf (14.67, 22.41, 33.00, 35.68 and 37.17 cm, respectively) was recorded from K_0 at the same days.

Statistically significance variation was recorded for different levels of GA_3 in terms of leaf length of broccoli at 20, 30, 40, 50 DAT and at harvest (Figure 5 and Appendix V). At 20, 30, 40, 50 DAT and at harvest, the longest leaf (16.79, 26.02, 37.33, 44.32 and 45.75 cm, respectively) was observed from G_3 which was statistically similar (16.44, 25.71, 36.80, 43.54 and 45.43 cm, respectively) to G_2 and closely followed (15.69, 24.43, 35.26, 41.50 and 42.63 cm, respectively) by G_1 , while the shortest leaf (14.60, 22.78, 33.09, 38.20 and 39.28 cm, respectively) from G_0 at same data recording days.

Leaf length of broccoli at 20, 30, 40, 50 DAT and at harvest varied significantly due to the combined effect of different levels of potassium and GA₃ (Table 5 and Appendix V). At 20, 30, 40, 50 DAT and at harvest, the longest leaf (17.92, 27.77, 39.79, 49.87 and 51.08 cm, respectively) was recorded from K_2G_3 treatment combination and the shortest leaf (13.68, 20.36, 30.94, 34.54 and 35.25 cm, respectively) from K_0G_0 treatment combination at same days.

Turaturata		Number	of leaves per	· plant at	
Treatments	20 DAT	30 DAT	40 DAT	50 DAT	At harvest
K_0G_0	4.88 e	10.27 f	14.80 g	17.60 e	18.12 g
K_0G_1	5.33 e	12.25 de	16.82 ef	18.87 e	19.66 e-g
K ₀ G ₂	5.47 e	11.40 e	15.93 fg	18.33 e	19.14 fg
K ₀ G ₃	5.53 e	13.00 cd	16.67 ef	18.27 e	19.11 fg
K_1G_0	6.28 d	11.60 e	18.53 cd	20.00 de	20.58 d-f
K ₁ G ₁	7.26 bc	13.38 b-d	19.95 bc	23.07 bc	23.53 bc
K_1G_2	7.73 bc	14.40 ab	20.60 b	24.33 ab	25.01 ab
K ₁ G ₃	7.13 c	14.00 a-c	20.53 b	24.67 ab	25.18 ab
K_2G_0	6.95 cd	11.80 e	18.20 de	21.27 cd	21.58 с-е
K ₂ G ₁	7.19 c	12.58 de	19.15 b-d	21.80 cd	22.66 cd
K ₂ G ₂	8.00 ab	14.80 a	22.13 a	25.40 ab	25.94 a
K ₂ G ₃	8.67 a	15.13 a	22.40 a	25.73 a	26.44 a
LSD _(0.05)	0.714	1.084	1.504	2.252	2.203
Level of significance	0.05	0.01	0.01	0.05	0.05
CV(%)	6.30	7.97	7.55	6.15	8.89

Table 4. Combined effect of different levels of potassium and GA3 on
number of leaves per plant at different days after transplanting
(DAT) and at harvest of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

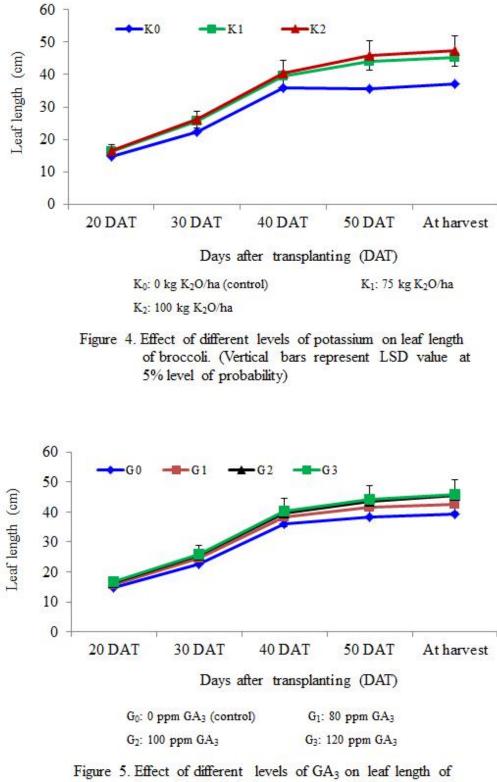


Figure 5. Effect of different levels of GA₃ on leaf length of broccoli. (Vertical bars represent LSD value at 5% level of probability)

Treatment		Le	af length (cm) at	
Treatment	20 DAT	30 DAT	40 DAT	50 DAT	At harvest
K_0G_0	13.68 f	20.36 e	30.94 f	34.54 h	35.25 g
K_0G_1	14.99 de	23.30 cd	33.58 de	36.89 gh	38.25 fg
K_0G_2	14.46 ef	22.56 d	32.64 ef	34.34 h	36.25 g
K_0G_3	15.55 de	23.41 cd	34.84 с-е	36.95 gh	38.93 fg
K_1G_0	15.02 de	23.79 cd	34.04 de	39.65 fg	40.86 ef
K ₁ G ₁	16.20 b-d	25.05 bc	35.92 b-d	43.39 de	44.24 с-е
K_1G_2	17.26 ab	27.03 ab	38.53 ab	47.04 a-c	48.97 ab
K ₁ G ₃	16.90 a-c	26.88 ab	37.38 а-с	46.15 b-d	47.24 a-c
K_2G_0	15.12 de	24.19 cd	34.30 de	40.41 ef	41.74 d-f
K_2G_1	15.88 cd	24.95 bc	36.27 b-d	44.22 cd	45.40 b-d
K ₂ G ₂	17.60 a	27.56 a	39.23 a	49.26 ab	51.07 a
K ₂ G ₃	17.92 a	27.77 a	39.79 a	49.87 a	51.08 a
LSD _(0.05)	1.157	1.961	2.456	3.190	3.807
Level of significance	0.05	0.05	0.01	0.01	0.05
CV(%)	9.47	6.68	7.82	9.28	8.77

Table 5. Combined effect of different levels of potassium and GA₃ on leaf length at different days after transplanting (DAT) and at harvest of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

4.4 Leaf breadth

Leaf breadth of broccoli at 20, 30, 40, 50 DAT and at harvest showed significant differences due to different levels of potassium (Table 6 and Appendix VI). At 20, 30, 40, 50 DAT and at harvest, the highest leaf breadth (8.55, 13.57, 17.24, 19.42 and 20.35 cm, respectively) was found from K_2 which was statistically similar (8.40, 13.29, 16.92, 18.74 and 19.87 cm, respectively) to K_1 , while the lowest leaf breadth (7.60, 11.36, 14.89, 15.98 and 16.84 cm, respectively) was recorded from K_0 at the same days.

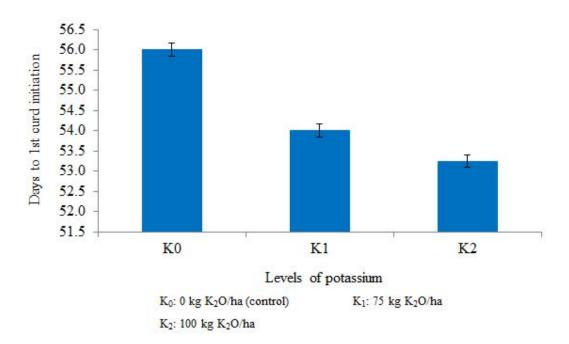
Due to application of different levels of GA_3 showed significant variation in terms of leaf breadth of broccoli at 20, 30, 40, 50 DAT and at harvest (Table 6 and Appendix VI). At 20, 30, 40, 50 DAT and at harvest, the highest leaf breadth (8.77, 13.59, 17.25, 19.18 and 20.28 cm, respectively) was observed from G_3 which was statistically similar (8.64, 13.38, 16.99, 18.87 and 19.85 cm, respectively) to G_2 and closely followed (8.05, 12.63, 16.11, 17.76 and 18.65 cm, respectively) by G_1 , whereas the lowest leaf breadth (7.26, 11.36, 15.06, 16.38 and 17.30 cm, respectively) was recorded from G_0 at same data recording days.

Combined effect of different levels of potassium and GA_3 varied significantly in terms of leaf breadth of broccoli at 20, 30, 40, 50 DAT and at harvest (Table 7 and Appendix VI). At 20, 30, 40, 50 DAT and at harvest, the highest leaf breadth (9.32, 14.73, 18.40, 20.98 and 21.85 cm, respectively) was recorded from K_2G_3 treatment combination and the lowest leaf breadth (6.79, 10.34, 13.67, 15.02 and 15.54 cm, respectively) from K_0G_0 treatment combination at same days.

4.5 Days to 1st curd initiation

Statistically significant variation was recorded in terms of days to 1^{st} curd initiation of broccoli due to application of different levels of potassium (Figure 6 and Appendix VII). The maximum days to 1^{st} curd initiation (56.00) was found from K₀, while the minimum days (53.25) was recorded from K₂ which was statistically similar (54.00) to K₁.

Table 6. Effect of different levels of potassium and GA₃ on leaf breadth at different days after transplanting (DAT) and at harvest of broccoli


Tuestuesent	Leaf breadth (cm) at				
Treatment	20 DAT	30 DAT	40 DAT	50 DAT	At harvest
Levels of potassium					
K_0	7.60 b	11.36 b	14.89 b	15.98 b	16.84 b
K1	8.40 a	13.29 a	16.92 a	18.74 a	19.87 a
K ₂	8.55 a	13.57 a	17.24 a	19.42 a	20.35 a
LSD(0.05)	0.384	0.446	0.692	0.717	0.774
Level of significance	0.01	0.01	0.01	0.01	0.01
Levels of GA ₃					
G_0	7.26 c	11.36 c	15.06 c	16.38 c	17.30 c
G1	8.05 b	12.63 b	16.11 b	17.76 b	18.65 b
G ₂	8.64 a	13.38 a	16.99 a	18.87 a	19.85 a
G ₃	8.77 a	13.59 a	17.25 a	19.18 a	20.28 a
LSD _(0.05)	0.444	0.516	0.798	0.828	0.893
Level of significance	0.01	0.01	0.01	0.01	0.01
CV(%)	9.95	7.14	8.68	9.05	8.45

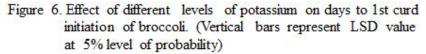

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

Table 7. Combined effect of different levels of potassium and GA₃ on leaf breadth at different days after transplanting (DAT) and at harvest of broccoli

Treatment		Lea	f breadth (cm	Leaf breadth (cm) at		
Treatment	20 DAT	30 DAT	40 DAT	50 DAT	At harvest	
K_0G_0	6.79 d	10.34 d	13.67 e	15.02 f	15.54 f	
K_0G_1	7.74 c	11.87 c	15.44 cd	16.42 d-f	17.24 de	
K ₀ G ₂	7.69 c	11.41 c	14.88 de	15.55 ef	16.49 ef	
K ₀ G ₃	8.16 bc	11.83 c	15.58 cd	16.92 de	18.08 de	
K ₁ G ₀	7.49 cd	11.71 c	15.64 cd	16.95 de	17.90 de	
K ₁ G ₁	8.22 bc	13.09 b	16.43 bc	18.00 cd	18.90 cd	
K ₁ G ₂	9.05 a	14.16 a	17.84 ab	20.39 a	21.78 a	
K ₁ G ₃	8.83 ab	14.21 a	17.77 ab	19.64 ab	20.90 ab	
K ₂ G ₀	7.50 cd	12.04 c	15.86 cd	17.17 d	18.46 cd	
K ₂ G ₁	8.20 bc	12.93 b	16.45 bc	18.87 bc	19.81 bc	
K ₂ G ₂	9.19 a	14.57 a	18.25 a	20.67 a	21.27 ab	
K ₂ G ₃	9.32 a	14.73 a	18.40 a	20.98 a	21.85 a	
LSD(0.05)	0.769	0.893	1.383	1.435	1.547	
Level of significance	0.05	0.05	0.05	0.05	0.05	
CV(%)	9.95	7.14	8.68	9.09	8.45	

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

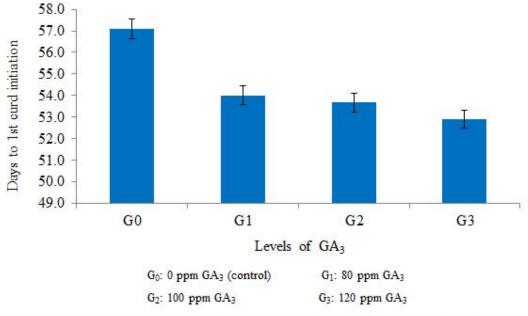


Figure 7. Effect of different levels of GA₃ on days to 1st curd initiation of broccoli. (Vertical bars represent LSD value at 5% level of probability)

Different levels of GA_3 varied significantly in terms of days to 1st curd initiation of broccoli (Figure 7 and Appendix VII). The maximum days to 1st curd initiation (57.11) was observed from G_0 , whereas the lowest days (52.89) was recorded from G_3 which was statistically similar to G_2 and G_1 . Lendve *et al.* (2010) reported that 75 ppm GA_3 , gave better results to days required for head initiation.

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of days to 1st curd initiation of broccoli (Figure 8 and Appendix VII). The maximum days to 1st curd initiation (59.67) was recorded from K_0G_0 treatment combination and the minimum days (50.00) was recorded from K_2G_3 treatment combination.

4.6 Length of stem

Different levels of potassium showed significant differences in terms of length of stem of broccoli (Table 8 and Appendix VII). The highest length of stem (22.57 cm) was found from K_2 which was statistically similar (21.94 cm) to K_1 , while the lowest length of stem (17.97 cm) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study.

Length of stem of broccoli varied significantly due to different levels of GA_3 (Table 8 and Appendix VII). The highest length of stem (21.93 cm) was observed from G_3 which was statistically similar (21.77 cm) to G_2 and closely followed (20.53 cm) by G_1 , whereas the lowest length of stem (19.07 cm) was recorded from the control. Manjit Singh (2011) showed that GA_3 increase the length of stem of broccoli upto a certain limit.

Combined effect of different levels of potassium and GA_3 showed statistically significant variation in terms of length of stem of broccoli (Table 9 and Appendix VII). The highest length of stem (24.27 cm) was recorded from K_2G_3 and the lowest length of stem (16.59 cm) was recorded from K_0G_0 treatment combination.

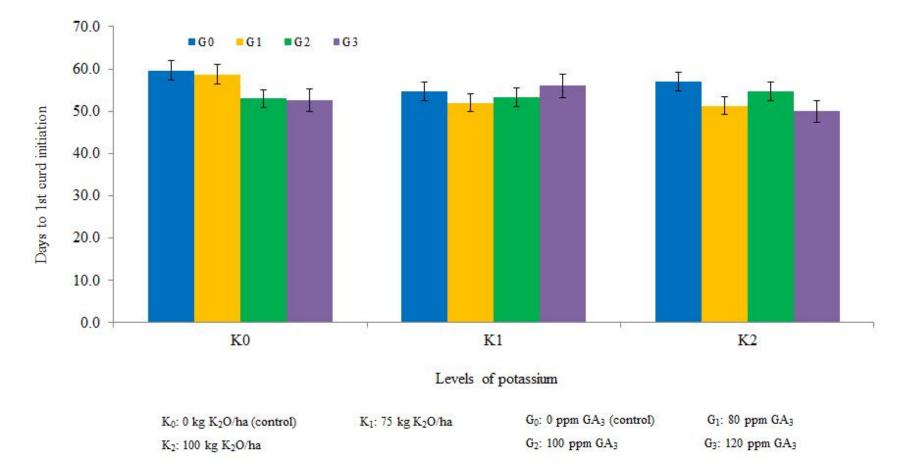


Figure 8. Combined effect of different levels of potassium and GA₃ on days to 1st curd initiation of broccoli. (Vertical bars represent LSD value at 5% level of probability)

	Length of	Diameter	Length of	Weight of	Diameter	
Treatments	Stem	of stem	root	primary	of primary	
	(cm)	(cm)	(cm)	curd (g)	curd (cm)	
Levels of potassium		· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·		
K_0	17.97 b	2.18 c	19.33 c	399.08 b	7.56 b	
K1	21.94 a	2.36 b	21.89 b	457.52 a	8.20 a	
K ₂	22.57 a	2.48 a	22.98 a	470.22 a	8.60 a	
LSD _(0.05)	1.965	0.107	0.767	21.19	0.423	
Level of significance	0.01	0.01	0.01	0.01	0.01	
Levels of GA ₃						
G_0	19.07 b	2.03 c	19.12 c	393.57 c	7.10 c	
G ₁	20.53 ab	2.32 b	21.08 b	439.59 b	7.85 b	
G ₂	21.77 a	2.47 a	22.57 a	465.17 a	8.66 a	
G ₃	21.93 a	2.54 a	22.84 a	470.75 a	8.88 a	
LSD(0.05)	2.269	0.124	0.885	24.46	0.489	
Level of significance	0.01	0.01	0.01	0.01	0.01	
CV(%)	9.81	8.88	7.95	9.30	8.07	

Table 8. Effect of different levels of potassium and GA3 on yield
contributing characters and yield of broccoli

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability

G₀: 0 ppm GA₃ (control)

K₀: 0 kg K₂O/ha (control)

K₁: 75 kg K₂O/ha

K₂: 100 kg K₂O/ha

G₁: 80 ppm GA₃ G₂: 100 ppm GA₃

G₃: 120 ppm GA₃

Treatments	Length of Stem (cm)	Diameter of stem (cm)	Length of root (cm)	Weight of primary curd (g)	Diameter of primary curd (cm)
K_0G_0	16.59 d	1.97 g	17.93 e	350.65 f	6.96 h
K ₀ G ₁	19.09 b-d	2.23 d-f	19.52 с-е	423.97 с-е	7.51 e-h
K ₀ G ₂	17.23 cd	2.19 e-g	19.25 de	392.62 ef	7.43 e-h
K ₀ G ₃	18.96 b-d	2.34 с-е	20.64 cd	429.07 e-f	8.33 с-е
K ₁ G ₀	20.40 a-d	2.01 fg	19.25 de	425.38 с-е	7.08 gh
K ₁ G ₁	20.83 a-d	2.29 de	21.04 c	440.18 cd	7.95 d-g
K ₁ G ₂	23.97 a	2.58 ab	24.02 ab	495.84 ab	9.21 a-c
K ₁ G ₃	22.57 ab	2.56 а-с	23.26 ab	468.66 a-c	8.58 b-d
K_2G_0	20.22 a-d	2.12 e-g	20.17 cd	404.67 de	7.25 f-h
K ₂ G ₁	21.67 а-с	2.44 b-d	22.67 b	454.61 bc	8.08 d-f
K ₂ G ₂	24.12 a	2.64 ab	24.45 a	507.05 a	9.34 ab
K ₂ G ₃	24.27 a	2.73 a	24.62 a	514.53 a	9.73 a
LSD _(0.05)	3.930	0.214	1.533	42.37	0.847
Level of significance	0.05	0.05	0.05	0.05	0.05
CV(%)	9.81	8.88	7.95	9.30	8.07

Table 9. Combined effect of different levels of potassium and GA3 on yieldcontributing characters and yield of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

4.7 Diameter of stem

Diameter of stem of broccoli showed significant differences due to different levels of potassium (Table 8 and Appendix VII). The highest diameter of stem (2.48 cm) was found from K_2 which was closely followed (2.36 cm) by K_1 , while the lowest diameter of stem (2.18 cm) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study in earlier.

Different levels of GA_3 varied significantly in terms of diameter of stem of broccoli (Table 8 and Appendix VII). The highest diameter of stem (2.54 cm) was observed from G_3 which was statistically similar (2.47 cm) to G_2 and closely followed (2.32 cm) by G_1 , whereas the lowest diameter of stem (2.03 cm) was recorded from G_0 .

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of diameter of stem of broccoli (Table 9 and Appendix VII). The highest diameter of stem (2.73 cm) was recorded from K_2G_3 treatment combination and the lowest diameter of stem (1.97 cm) was recorded from K_0G_0 treatment combination. Sharma and Mishra (1989) reported that curd size increased with foliar application of GA_3 .

4.8 Length of root

Statistically significant variation was recorded in terms of length of root of broccoli due to different levels of potassium (Table 8 and Appendix VII). The highest length of root (22.98 cm) was found from K_2 which was closely followed (21.89 cm) by K_1 , while the lowest length of root (19.33 cm) was recorded from the control.

Different levels of GA_3 varied significantly in terms of length of root of broccoli (Table 8 and Appendix VII). The highest length of root (22.84 cm) was observed from G_3 which was statistically similar (22.57 cm) to G_2 and closely followed (21.08 cm) by G_1 , whereas the lowest length of root (19.12 cm) was recorded from G_0 . Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of length of root of broccoli (Table 9). The highest length of root (24.62 cm) was recorded from K_2G_3 treatment combination and the lowest length of root (17.93 cm) was recorded from K_0G_0 .

4.9 Weight of Primary curd

Weight of primary curd of broccoli showed significant differences due to different levels of potassium (Table 8 and Appendix VII). The highest weight of primary curd (470.22 g) was found from K_2 which was statistically similar (457.52 g) to K_1 , while the lowest weight of primary curd (399.08 g) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study.

Different levels of GA₃ varied significantly in terms of weight of primary curd of broccoli (Table 8 and Appendix VII). The highest weight of primary curd (470.75 g) was observed from G₃ which was statistically similar (465.17 g) to G₂ and closely followed (439.59 g) by G₁, whereas the lowest weight of primary curd (393.57 g) was recorded from G₀.

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of weight of primary curd of broccoli (Table 9 and Appendix VII). The highest weight of primary curd (514.53 g) was recorded from K_2G_3 treatment combination and the lowest weight of primary curd (350.65 g) was recorded from K_0G_0 treatment combination.

4.10 Diameter of primary curd

Diameter of primary curd of broccoli showed significant differences due to different levels of potassium (Table 8 and Appendix VII). The highest diameter of primary curd (8.60 cm) was found from K_2 which was statistically similar (8.20 cm) to K_1 , while the lowest diameter of primary curd (7.56 cm) was recorded from K_0 .

Different levels of GA₃ varied significantly in terms of diameter of primary curd of broccoli (Table 8 and Appendix VII). The highest diameter of primary curd (8.88 cm) was observed from G₃ which was statistically similar (8.66 cm) to G₂ and closely followed (7.85 cm) by G₁, whereas the lowest diameter of primary curd (7.10 cm) was recorded from G₀.

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of diameter of primary curd of broccoli (Table 9 and Appendix VII). The highest diameter of primary curd (9.73 cm) was recorded from K_2G_3 treatment combination and the lowest diameter (6.96 cm) was recorded from K_0G_0 treatment combination.

4.11 Dry matter content of plant

Dry matter content of plant of broccoli showed significant differences due to different levels of potassium (Table 10 and Appendix VIII). The highest dry matter content of plant (11.32 g) was found from K_2 which was statistically similar (11.09 g) to K_1 , while the lowest dry matter content of plant (9.50 g) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study.

Different levels of GA₃ varied significantly in terms of dry matter content of plant of broccoli (Table 10 and Appendix VIII). The highest dry matter content of plant (11.28 g) was observed from G₃ which was statistically similar (11.14 g) to G₂ and closely followed (10.45 g) by G₁, whereas the lowest dry matter content of plant (9.71 g) was recorded from G₀. Lendve *et al.* (2010) found that application of GA₃ (50 ppm) was found significantly superior in terms of number of dry weight of the leaves.

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of dry matter content of plant of broccoli (Table 11 and Appendix VIII). The highest dry matter content of plant (13.42 g) was recorded from K_2G_3 treatment combination and the lowest (9.60 g) was recorded from K_0G_0 .

	e	•			
_	Dry matter	Dry matter	Number of	Weight of	Curd yield
Treatments	content of	content of	secondary	secondary	per hectare
	plant (%)	curd (%)	curd per plant	curd (g)	(ton)
Levels of potassium	<u>l</u>				
K_0	9.50 b	12.01 b	2.47 b	56.46 b	18.98 b
K1	11.09 a	13.20 a	2.87 a	68.43 a	21.91 a
K ₂	11.32 a	13.39a	3.04 a	70.85 a	22.54 a
LSD(0.05)	0.829	0.232	0.222	3.314	0.949
Level of significance	0.01	0.01	0.01	0.01	0.01
Levels of GA ₃					
G_0	9.71 c	12.22 c	2.20 c	53.89 c	18.64 c
G ₁	10.45 b	13.07 b	2.72 b	63.08 b	20.94 b
G ₂	11.14 a	13.43 a	3.07 a	70.88 a	22.34 a
G ₃	11.28 a	13.54 a	3.19 a	73.13 a	22.66 a
LSD(0.05)	0.667	0.321	0.257	3.827	1.096
Level of significance	0.01	0.01	0.01	0.01	0.01
CV(%)	8.21	9.01	9.38	7.09	8.82

Table 10. Effect of different levels of potassium and GA3 on yield
contributing characters and yield of broccoli

In a column means having similar letter(s) are statistically similar and those having dissimilar letter(s) differ significantly at 0.05 level of probability

G₃: 120 ppm GA₃

 $K_0: 0 \text{ kg } K_2O/ha \text{ (control)}$ $G_0: 0 \text{ ppm } GA_3 \text{ (control)}$
 $K_1: 75 \text{ kg } K_2O/ha$ $G_1: 80 \text{ ppm } GA_3$
 $K_2: 100 \text{ kg } K_2O/ha$ $G_2: 100 \text{ ppm } GA_3$

Treatments	Dry matter content of plant (%)	Dry matter content of curd (%)	Number of secondary curd per plant	Weight of secondary curd (g)	Curd yield per hectare (ton)
K_0G_0	9.60 e	11.74 g	2.09 g	47.04 f	16.57 g
K_0G_1	10.74 de	12.75 ef	2.43 e-g	58.74 с-е	20.11 d-f
K ₀ G ₂	10.67 de	13.07 f	2.38 fg	55.70 e	18.68 f
K ₀ G ₃	11.14 cd	13.47 ef	2.98 b-d	64.35 cd	20.56 c-f
K ₁ G ₀	11.31 cd	13.78 de	2.23 g	57.14 e	20.10 d-f
K ₁ G ₁	11.98 bc	14.15 cd	2.83 d-f	65.09 c	21.05 с-е
K ₁ G ₂	12.95 ab	14.71 ab	3.38 а-с	77.81 ab	23.90 ab
K ₁ G ₃	12.65 ab	14.52 bc	3.04 b-d	73.70 b	22.60 bc
K_2G_0	11.20 cd	13.76 de	2.29 g	57.50 de	19.26 ef
K ₂ G ₁	11.99 bc	14.12 cd	2.90 с-е	65.41 c	21.67 cd
K ₂ G ₂	13.17 a	14.95 ab	3.44 ab	79.14 ab	24.42 ab
K ₂ G ₃	13.42 a	15.07 a	3.54 a	81.34 a	24.83 a
LSD(0.05)	0.967	0.470	0.445	6.628	1.898
Level of significance	0.05	0.05	0.05	0.01	0.05
CV(%)	8.21	9.01	9.38	7.09	8.82

Table 11. Combined effect of different levels of potassium and GA3 on yield
contributing characters and yield of broccoli

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

4.12 Dry matter content of curd

Dry matter content of curd of broccoli showed significant differences due to different levels of potassium (Table 10 and Appendix VIII). The highest dry matter content of curd (13.39 g) was found from K_2 which was statistically similar (13.20 g) to K_1 , while the lowest dry matter content of curd (12.01 g) was recorded from K_0 .

Different levels of GA_3 varied significantly in terms of dry matter content of curd of broccoli (Table 10 and Appendix VIII). The highest dry matter content of curd (13.54 g) was observed from G_3 which was statistically similar (13.43 g) to G_2 and closely followed (13.07 g) by G_1 , whereas the lowest dry matter content of curd (12.22 g) was recorded from G_0 .

Combined effect of different levels of potassium and GA_3 varied significantly in terms of dry matter content of curd of broccoli (Table 11 and Appendix VIII). The highest dry matter content of curd (15.07 g) was recorded from K_2G_3 treatment combination and the lowest dry matter content of curd (11.74 g) was recorded from K_0G_0 .

4.13 Number of secondary curd per plant

Different levels of potassium showed significant differences in terms of number of secondary curd per plant of broccoli (Table 10 and Appendix VIII). The highest number of secondary curd per plant (3.04) was found from K_2 which was statistically similar (2.87) to K_1 , while the lowest number of secondary curd per plant (2.47) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study.

Statistically significant variation was recorded for different levels of GA_3 in terms of number of secondary curd per plant of broccoli (Table 10 and Appendix VIII). The highest number of secondary curd per plant (3.19) was observed from G_3 which was statistically similar (3.07) to G_2 and closely followed (2.72) by G_1 , whereas the lowest number of secondary curd per plant (2.20) was recorded from G_0 .

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA₃ in terms of number of secondary curd per plant of broccoli (Table 11 and Appendix VIII). The highest number of secondary curd per plant (3.54) was recorded from K_2G_3 treatment combination and the lowest number of secondary curd per plant (2.09) was recorded from K_0G_0 .

4.14 Weight of secondary curd

Weight of secondary curd of broccoli showed significant differences due to different levels of potassium (Table 10 and Appendix VIII). The highest weight of secondary curd (70.85 g) was found from K_2 which was statistically similar (68.43 g) to K_1 , while the lowest weight of secondary curd (56.46 g) was recorded from K_0 . Similar findings also reported by Uddain *et al.* (2010) from their study.

Different levels of GA_3 varied significantly in terms of weight of secondary curd (Table 10 and Appendix VIII). The highest weight of secondary curd (73.13 g) was observed from G_3 which was statistically similar (70.88) to G_2 and closely followed (63.08 g) by G_1 , whereas the lowest weight of secondary curd (53.89 g) was recorded from G_0 .

Statistically significant variation was recorded due to combined effect of different levels of potassium and GA_3 in terms of weight of secondary curd of broccoli (Table 11 and Appendix VIII). The highest weight of secondary curd (81.34 g) was recorded from K_2G_3 treatment combination and the lowest weight of secondary curd (47.04 g) was recorded from K_0G_0 .

4.15 Curd yield per plot

Different levels of potassium showed significant differences in terms of curd yield per plot of broccoli (Figure 9 and Appendix VIII). The highest curd yield per plot (5.41 kg) was found from K_2 which was statistically similar (5.26 kg) to K_1 , while the lowest curd yield per plot (4.56 kg) was recorded from K_0 .

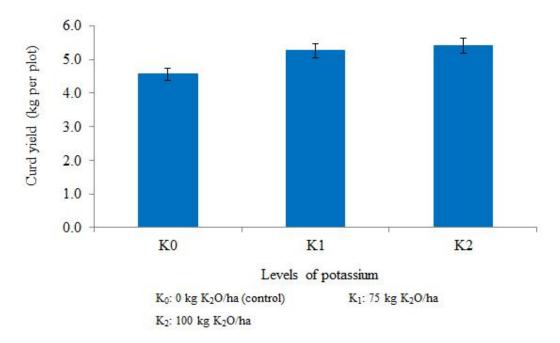


Figure 9. Effect of different levels of potassium on curd yield per plot of broccoli. (Vertical bars represent LSD value at 5% level of probability)

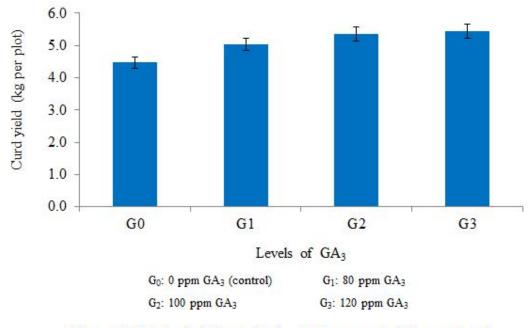


Figure 10. Effect of different levels of GA₃ on curd yield per plot of broccoli. (Vertical bars represent LSD value at 5% level of probability)

Statistically significant variation was recorded for different levels of GA_3 in terms of curd yield per plot (Figure 10 and Appendix VIII). The highest curd yield per plot (5.44 kg) was observed from G_3 which was statistically similar (5.36 kg) to G_2 and closely followed (5.03 kg) by G_1 , whereas the lowest curd yield per plot (4.47 kg) was recorded from G_0 . Dhengle and Bhosale (2008) reported that higher concentrations of plant growth regulators proved less effective for curd yield per plot.

Curd yield per plot of broccoli varied significantly due to combined effect of different levels of potassium and GA_3 (Figure 11 and Appendix VIII). The highest curd yield per plot (5.96 kg) was recorded from K_2G_3 and the lowest curd yield per plot (3.98 kg) was recorded from K_0G_0 .

4.16 Curd yield per hectare

Curd yield per hectare of broccoli showed significant differences due to different levels of potassium (Table 10 and Appendix VIII). The highest curd yield per hectare (22.54 ton) was found from K_2 which was statistically similar (21.91 ton) to K_1 , while the lowest curd yield per hectare (18.98 ton) was recorded from K_0 .

Different levels of GA_3 varied significantly in terms of curd yield per hectare (Table 10 and Appendix VIII). The highest curd yield per hectare (22.66 ton) was observed from G_3 which was statistically similar (22.34 ton) to G_2 and closely followed (20.94 ton) by G_1 , whereas the lowest curd yield per hectare (18.64 ton) was recorded from G_0 . GA_3 have a positive role on curd formation and curd size of broccoli (Sharma and Mishra, 1989). Vijay and Ray (2000) reported that GA_3 at 100 ppm produced the largest curds.

Combined effect of different levels of potassium and GA_3 showed statistically significant variation in terms of curd yield per hectare of broccoli (Table 11 and Appendix VIII). The highest curd yield per hectare (24.83 ton) was recorded from K_2G_3 treatment combination and the lowest curd yield per hectare (16.57 ton) was recorded from K_0G_0 .

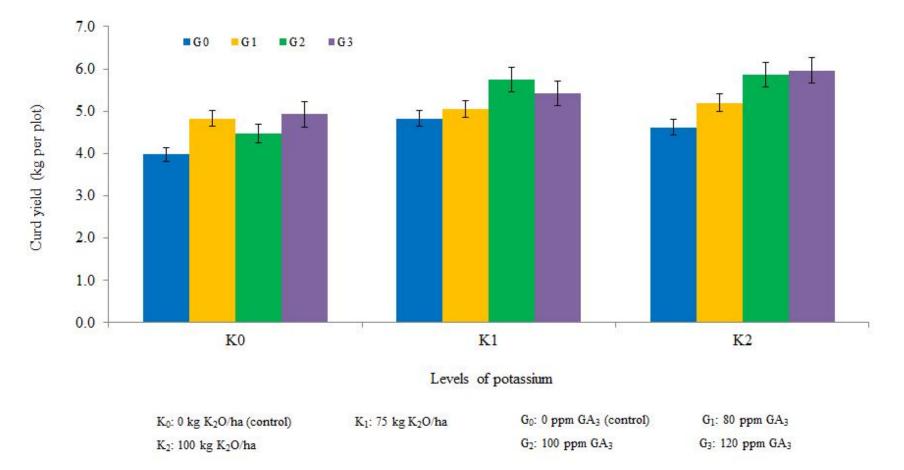


Figure 11. Combined effect of different levels of potassium and GA₃ on curd yield per plot of broccoli. (Vertical bars represent LSD value at 5% level of probability)

4.17 Economic analysis

Cost of production and benefit cost of broccoli cultivation presented in Table 12 and Appendix IX. Price of broccoli was considered as per present market price. The economic analysis presented under the following heads-

4.17.1 Cost of production

Costs for land preparation, fertilizers, GA₃, seeds, manpower and all operational cost from seeds sowing to harvesting of broccoli were recorded as per plot and converted into hectare.

4.17.2 Gross return

The combination of different level of potassium and GA_3 showed different value in terms of gross return under the trial of broccoli production (Table 12). The highest gross return (744,900 Tk./ha) was obtained from the treatment combination K_2G_3 and the second highest gross return (732,600 Tk./ha) was found in K_2G_2 , whereas the lowest gross return (497,100 Tk./ha) was obtained from K_0G_0 .

4.17.3 Net return

In case of net return, application of different level of potassium and GA₃ showed different levels of net return under the present trial (Table 12). The highest net return (417,996 Tk./ha) was found from the treatment combination K_2G_3 and the second highest net return (406,141 Tk./ha) was obtained from the combination K_2G_2 . The lowest (175,872 Tk./ha) net return was obtained K_0G_0 .

4.17.4 Benefit cost ratio

In the application of different level of potassium and GA_3 , the highest benefit cost ratio (2.28) was noted from the combination of K_2G_3 and the second highest benefit cost ratio (2.24) was estimated from the combination of K_2G_2 . The lowest benefit cost ratio (1.55) was obtained from K_0G_0 (Table 12). From economic point of view, it is apparent from the above results that the combination of K_2G_3 was best than rest of the combination in broccoli cultivation.

Treatments	Cost of production (Tk./ha)	Yield of broccoli (t/ha)	Gross return (Tk./ha)	Net return (Tk./ha)	Benefit cost ratio
K_0G_0	321,228	16.57	497,100	175,872	1.55
K_0G_1	323,231	20.11	603,300	280,069	1.87
K ₀ G ₂	323,676	18.68	560,400	236,724	1.73
K ₀ G ₃	324,122	20.56	616,800	292,679	1.90
K_1G_0	323,315	20.10	603,000	279,685	1.87
K_1G_1	325,318	21.05	631,500	306,182	1.94
K ₁ G ₂	325,763	23.90	717,000	391,237	2.20
K ₁ G ₃	326,208	22.60	678,000	351,792	2.08
K ₂ G ₀	324,010	19.26	577,800	253,790	1.78
K_2G_1	326,014	21.67	650,100	324,086	1.99
K ₂ G ₂	326,459	24.42	732,600	406,141	2.24
K_2G_3	326,904	24.83	744,900	417,996	2.28

Table 12. Cost and return of broccoli cultivation as influenced by different
levels of potassium and GA3

Price of broccoli @ Tk. 30/kg (according to Kawran Bazar market, Dhaka)

K ₀ : 0 kg K ₂ O/ha (control)	G ₀ : 0 ppm GA ₃ (control)
K ₁ : 75 kg K ₂ O/ha	G ₁ : 80 ppm GA ₃
K ₂ : 100 kg K ₂ O/ha	G ₂ : 100 ppm GA ₃
	G ₃ : 120 ppm GA ₃

CHAPTER V

SUMMARY AND CONCLUSION

CHAPTER V

SUMMARY AND CONCLUSION

The experiment was conducted in the Horticulture Farm, Sher-e-Bangla Agricultural University, Dhaka during November 2016 to March 2017. The experiment consisted of two factors, such as Factor A: Potassium fertilizer (three levels) as K_0 : 0 kg K_2O /ha (control), K_1 : 75 kg K_2O /ha, K_2 : 100 kg K_2O /ha and Factor B: Gibberellic acid-GA₃ (four levels) as G_0 : 0 ppm GA₃ (control), G_1 : 80 ppm GA₃, G_2 : 100 ppm GA₃, G_3 : 120 ppm GA₃. The two factorial experiment was laid out in Randomized Complete Block Design with three replications.

In case of different levels of potassium, at 20, 30, 40, 50 DAT and harvest, the tallest plant (22.23, 36.84, 52.87, 65.06 and 70.78 cm, respectively) was found from K₂, while the shortest plant (18.28, 31.41, 47.19, 57.01 and 62.13 cm, respectively) was recorded from K₀. At 20, 30, 40, 50 DAT and harvest, the highest number of leaves per plant (7.70, 13.58, 20.47, 23.55 and 24.16, respectively) was found from K₂, while the lowest number (5.30, 11.73, 16.05, 18.27 and 19.01, respectively) was recorded from K_0 at the same days. At 20, 30, 40, 50 DAT and harvest, the longest leaf (16.63, 26.12, 37.40, 45.94 and 47.32 cm, respectively) was found from K₂, while the shortest leaf (14.67, 22.41, 33.00, 35.68 and 37.17 cm, respectively) was recorded from K_0 at the same days. At 20, 30, 40, 50 DAT and harvest, the highest leaf breadth (8.55, 13.57, 17.24, 19.42 and 20.35 cm, respectively) was found from K_2 , while the lowest leaf breadth (7.60, 11.36, 14.89, 15.98 and 16.84 cm, respectively) was recorded from K_0 at the same days. The maximum days to 1^{st} curd initiation (56.00) was found from K_0 , while the minimum days (53.25) was recorded from K_2 . The highest weight of primary curd (470.22 g) was found from K₂, while the lowest (399.08 g) was recorded from K_0 . The highest number of secondary curd per plant (3.04) was found from K_2 , while the lowest (2.47) was recorded from K_0 . The highest curd yield per hectare (22.54 ton) was found from K₂, while the lowest curd yield (18.98 t/ha) was recorded from K_0 .

For GA₃, at 20, 30, 40, 50 DAT and harvest, the tallest plant (22.02, 36.93, 53.08, 65.11 and 70.98 cm, respectively) was observed from G₃, while the shortest plant (18.87, 32.04, 47.10, 57.41 and 62.11 cm, respectively) was recorded from G₀. At 20, 30, 40, 50 DAT and harvest, the highest number of leaves per plant (7.11, 14.04, 19.87, 22.89 and 23.58, respectively) was observed from G₃, while the lowest number (6.04, 11.22, 17.17, 19.62 and 20.09, respectively) was recorded from G_0 at same data recording days. At 20, 30, 40, 50 DAT and harvest, the longest leaf (16.79, 26.02, 37.33, 44.32 and 45.75 cm, respectively) was observed from G_3 , while the shortest leaf (14.60, 22.78, 33.09, 38.20 and 39.28 cm, respectively) was recorded from G_0 at same data recording days. At 20, 30, 40, 50 DAT and harvest, the highest leaf breadth (8.77, 13.59, 17.25, 19.18 and 20.28 cm, respectively) was observed from G_3 , whereas the lowest leaf breadth (7.26, 11.36, 15.06, 16.38 and 17.30 cm, respectively) was recorded from G_0 . The maximum days to 1^{st} curd initiation (57.11) was observed from G_0 , whereas the lowest days (52.89) was recorded from G_3 . The highest weight of primary curd (470.75 g) was observed from G_3 , whereas the lowest weight of primary curd (393.57 g) was recorded from G_0 . The highest number of secondary curd per plant (3.19) was observed from G₃, whereas the lowest number (2.20) was recorded from G₀. The highest curd yield per hectare (22.66)ton) was observed from G3, whereas the lowest curd yield (18.64 t/ha) was recorded from the control.

Due to combined effect of different levels of potassium and GA₃, at 20, 30, 40, 50 DAT and harvest, the tallest plant (24.66, 40.61, 56.30, 68.81 and 74.55 cm, respectively) was recorded from K_2G_3 treatment combination and the shortest plant (16.97, 30.04, 44.81, 50.74 and 54.52 cm, respectively) was recorded from K_0G_0 . At 20, 30, 40, 50 DAT and harvest, the highest number of leaves per plant (8.67, 15.13, 22.40, 25.73 and 26.44, respectively) was recorded from K_2G_3 treatment combination and the lowest number (4.88, 10.27, 14.80, 17.60 and 18.12, respectively) was recorded from K_0G_0 at same days. At 20, 30, 40, 50 DAT and harvest, the longest leaf (17.92, 27.77, 39.79, 49.87 and 51.08 cm, respectively) was recorded from K_2G_3 treatment combination and the shortest

leaf (13.68, 20.36, 30.94, 34.54 and 35.25 cm, respectively) was recorded from K_0G_0 at same days. At 20, 30, 40, 50 DAT and harvest, the highest leaf breadth (9.32, 14.73, 18.40, 20.98 and 21.85 cm, respectively) was recorded from K_2G_3 treatment combination and the lowest leaf breadth (6.79, 10.34, 13.67, 15.02 and 15.54 cm, respectively) was recorded from K_0G_0 at same days. The maximum days to 1st curd initiation (59.67) was recorded from K_2G_3 . The highest weight of primary curd (514.53 g) was recorded from K_2G_3 treatment combination and the lowest efform K_2G_3 treatment combination and the lowest number of secondary curd per plant (3.54) was recorded from K_2G_3 treatment combination and the lowest number (2.09) was recorded from K_2G_3 treatment combination and the lowest curd yield per hectare (16.57 ton) was recorded from K_2G_3 .

The highest gross return (744,900 Tk./ha) was obtained from the treatment combination K_2G_3 and the lowest gross return (497,100 Tk./ha) was obtained from K_0G_0 . The highest net return (417,996 Tk./ha) was found from the treatment combination K_2G_3 and the lowest (175,872 Tk./ha) net return was obtained K_0G_0 . The highest benefit cost ratio (2.28) was noted from the combination of K_2G_3 and the lowest BCR (1.55) was obtained from K_0G_0 (Table 12). From economic point of view, it is apparent from the above results that the combination of K_2G_3 was best than rest of the combination in broccoli cultivation.

Conclusion

- 100 kg K₂O shows better yield and yield attributes than other potassium doses;
- Among the different concentration of GA₃, broccoli shows better response with 120 ppm which was similar to 100 ppm of GA₃ and
- Finally, 100 kg K₂O with 120 ppm GA₃ encouraged superior growth, yield contributing characters and yield of broccoli.

Recommendation:

- The experiment was conducted only one growing season at Horticulture farm of Sher-e-Bangla Agricultural University;
- In this experiment higher level of potassium and GA₃ showed the best result. So further higher level of K and GA₃ can be experimented for achieving higher yield.
- Before final recommendation we may conduct such type of experiment in different agro ecological zones in Bangladesh.

REFERENCES

- Aditya, N. and Fordham, S.E. (1995). Effects of cold exposure and GA₃ during early growth stages on the date of flowering of the tropical cauliflower. *Indian J. Plant Physiol.*, **32**(1): 111-115.
- Alam, M.S., Iqbal, T.M.T., Amin, M. and Gaffar, M.A. (1989). Krishitattic Fasaler Utpadan O Unnayan (in Bengali). T. M. Jubair Bin Iqbal, Sirajgonj. pp. 231-239.
- Ambrosini, V.G., Voges, J.G., Benevenuto, R.F., Vilperte, V., Silveira, M.A., Brunetto, G. and Ogliari, J.B. (2015). Single-head broccoli response to nitrogen application. *Científica*, **43**: 84-92.
- Anonymous. (1989). Annual Report 1987-88. Bangladesh Agricultural Research Institute. Joydebpur, Gazipur. p. 133.
- Armstrong, D.L. (1998). Potassium for agriculture. Better Crops with Plant Food 82: 4-5.
- BARI (Bangladesh Agricultural Research Institute). (2014). Krishi Projukti Hatboi, Bangladesh Agricultural Research Institute, Joydevpur, Gazipur. p. 304.
- Belec, C., Villeneuve, S., Coulombe, J. and Tremblay, N. (2001). Influence of nitrogen fertilization on yield, hollow stem incidence and sap nitrate concentration in broccoli. *Canadian J. Plant Sci.*, **81**: 765-772.
- Bose, T.K. and Som, M.G. (1986). Vegetable crops in India. Naya Prokash, Calcutta-Six. India. p. 44.
- Bose, T.K., Kabir, J., Maity, T.K., Parthasarathy, V.A. and Som, M.G. (2002). Vegetable Crops in India. Naya Prokash. Calcatta. pp. 56-59.

- Brahma, S., Phookan, D.B., Gautam, B.P. (2002). Effect of nitrogen, phosphorus and potassium on growth and yield of broccoli (*Brassica oleraceae* var. *italica*) cv. Pusa broccoli KTS-1. J. Agri. Sci. Soc. North East India. 15(1): 104-106.
- Dharmender, K., Hujar, K.D. Paliwal, R and Kumar, D. (1996). Yield and yield attributes of cabbage as influenced by GA₃ and NAA. *Crop Res. Hisar.*, **12**(1): 120-122.
- Dhengle, R.P. and Bhosale, A.M. (2008). Effect of plant growth regulators on yield of cabbage (*Brassica oleraceae var. capitata*). *Interl. J. Plant Sci.*, 3(2): 376-378.
- Fernandez, J.L., Orozcol, L.F. and Munera, L.F.M. (2018). Effect of nitrogen, phosphorus and potassium fertilization on the yield of broccoli cultivars. *Rev. Fac. Nac. Agron. Med.*, **71**(1): 8375-8386.
- Gomez, K.A. and Gomez, A.A. (1984). Statistical Procedure for Agricultural Research (2nd edn.). *Intl. Rice Res. Inst., A Willey Int. Sci.*, pp. 28-192.
- Guan, P.C. and Chen, R.Y. (2001). Evaluation of N, K application on plant growth, curd yield characteristics of cauliflower and broccoli. Department of Horticulture, *Acta Hort.*, **23** (4): 115-119.
- Guo, D.P., Shah, G.A., Zeng, G.W. and Zheng, S. (2004). The interaction of plant growth regulators and vernalization on the growth and flowering of cauliflower (*Brassica oleracea* var. botrytis). *Plant Growth Reg.*, 43(2): 163-171.
- Islam, M.A., Diddiqua, A. and Kashem, M.A. (1993). Effect of growth regulators on growth, yield and ascorbic acid content of cabbage. *Bangladesh J. Agril. Sci.*, 20(1): 21-27.

- Islam, M.H., Shaheb, M.R., Rahman, S., Ahmed, B., Islam, A.T.M.T. and Sarker, P.C. (2010). Curd yield and profitability of broccoli as affected by phosphorus and potassium. *Intl. J. Sus. Crop Prod.*, 5: 1-7.
- Islam, M.S. and Noor, S. (1982). Performance of cabbage under levels of fertilization in flood plain soil of Jamalpur. *Bangladesh J. Agric. Res.*, 7(1): 35-40.
- Islam, M.T. (1985). The effect of some growth regulators on yield and biomass production of cabbage. *Punjab Veg. Grower*, **20**: 11-16.
- Lendve, V.H., Chavan, S.D., Barkule, S.R. and Bhosale, A.M. (2010). Effect of foliar application of growth regulators on growth of cabbage cv. Pride of India. *The Asian J. Hort.*, 5(2): 475-478.
- Manjit Singh, Rana, D.K., Rawat, J.M.S. and Rawat, S.S. (2011). Effect of GA₃ and kinetin on growth, yield and quality of sprouting broccoli (*Brassica oleracea* var. italica). J. Hort. Forst., 3(9): 282-285.
- Mishra, H.P. and Singh, B.P. (1986). Studies on nutrients and growth regulators interaction in "Snowball-6" cauliflower (*Brassica oleracea* var. *botrytis*). *Prog. Hort.*, 18(1-2): 77-82.
- Moniruzzaman, M., Rahman, S.M.L., Kibria, M.G., Rahman, M.A. and Hossain, M.M. (2007). Effect of boron and nitrogen on yield and hollowstem of broccoli. J. Soil. Nature. 1(3):24-29.
- Muthoo, A.K., Kmar, S. and Maurya, A.N. (1987). Studies on the effect of foliar application of GA₃ NAA and molybdenum on growth and yield of cauliflower (*Brassica oleracea* var. *botrytis*). *Haryana J. Hort. Sci.*, 16(1&2): 115-120.

- Nidhi-Arora, N., Yadav, R., Yadav, R.C., Chowdhury, J.B. and Arora, N. (1997). Role of IAA and BAP on plant regeneration in cultured cotyledons of cauliflower. *Cruciferae Newsl.*, **19**: 41-42.
- Nonnecke, I.L. (1989). Vegetable production. Van Nostrand Reinhold, NewYork. pp. 394-399.
- Patil, A.A., Maniur, S.M. and Nalwadi, U.G. (1987). Effect GA₃ and NAA on growth and yield of Cabbage. *South Indian Hort.*, **35**(5): 393-394.
- Pizetta, L.C., Ferreira, M.E., Cruz, M.C.P.D. and Barbosa, J.C. (2005). Response of boron fertilization on broccoli, cauliflower and cabbage planted in sandy soil. *J. Plant Nutri.*, **26**(12): 2587-2549.
- Rangkadilok, N., Nicolas, M.E., Bennett, R.N., Eagling, D.R., Premier, R.R. and Taylor, W.J. (2004). The effect of sulfur fertilizer on glucoraphanin levels in broccoli (*B. oleracea* L. var. *italica*) at different growth stages. *J. Agric. Food Chem.*, **52**: 2632-2639.
- Reddy, S.A. (1989). Effect of foliar application of urea and gibberellic acid on cauliflower (*Brassica oleracea* var. *botrytis*). J. Res. APAU. 17(1): 79-80.
- Reza, S.K., Prasad, M.B.N.V. and Singh, D.P. (2015). The effect of IAA and foliar nitrogen on wheat. *Ecosistema*. **12**: 123-126.
- Salunkhe, D.K. and Kadam, S.S. (1998). Handbook of Vegetable Science and Technology: Production, Storage and Processing, 1st edition. Marcel Dekker, Inc. Madison Avenue. New York, USA, pp. 256-280.
- Senthelhas, P.C., Caetano, J.R.G. and Teixeira. N.T. (1987). The effect of IAA and foliar Nitrogen on wheat, *Ecosistema*. **12**: 123-128.

- Sharma, S.K. and Mishra, R.C. (1989). Effect of growth regulators on flower morphometrics with reference to insect pollinators. *Indian J. Agril. Sci.*, 59(8): 546-547.
- Silva, D.P., Prado, RM., Barbosa, G., Oliveira, S.L., Fábio Tiraboschi Leal F.T., Leonardo Correia Costa, L.C. and Carmona, V.M.V. (2016). Broccoli growth and nutritional status as influenced by doses of nitrogen and boron. *African J. Agril Res.*, **11**(20): 1858-1861.
- Tadzhiryan, O.K. (1990). Effect of Ga₃ on bio-chemical characteristics of the grain in wheat in the M₁ and M₂, *Biol. J. Agric.*, **43**(1): 77-79.
- Talalay, P. and Fahey, J.W. (2001). Phytochemicals from Cruciferous plants protect against cancer by modulating carcinogen metabolism. Am. Soc. Nutr. Sci., 23: 3027-3033.
- Thara, N.L., Shelp, B.J.V.I., Shatuck, D. and Kokazov, N.I. (2013). Effect of nitrogen. phosphorus and potassium on growth and yield of broccoli (*Brassica oleracea* L.) cv. KSTS-1. *Veg. Sci.*, **29**(2): 154-156.
- Thompson, H.C. and Kelly, W.C. (1988). Cole Crops. In: Vegetable Crops McGraw Hill Book Co. New York. p. 15, 280-281, 370.
- Tindall, H.D. (1983). Vegetables in the Tropics. Macmillan Education Ltd. Basingstoke Hampshire , London. P. 176.
- Tomar, V.P.S., Sing, G.D. and Keshwa, G.L. (1991). Effect of plant growth chemicals on morpho-physiological characters of late sown wheat. *Indian J. Agron.*, **36**(1): 7-11.
- Uddain, J., Rahman, M.J., Mostafa, M.G. (2010). Effect of potassium on growth, yield and shelf life of broccoli (*Brassica oleracia* Var. Botrytis) cultivars.
 J. Hort Sci. & Ornament. Plants, 2(1): 01-07.

- Umar, S., Anjana, A.N.A. and Khan, N.A. (2013). Nitrate management approaches in leafy vegetables. Nitrate in leafy vegetables: toxicity and safety measures. IK International Publishing House Pvt. Ltd, New Delhi, pp. 166-181.
- Vijay, K. and Ray, N. (2000). Effect of plant growth regulators on cauliflower cv. Pant subhra. *Orissa J. Hort.*, **28**(1): 65-67.
- Wang, G.Y., Zhang, C.Z. and Zhang, F.S. (2007). Effect of nitrogen, phosphorus and potassium fertilizer on the yield and physiology target of broccoli. *China Veg.*, 1(14-17): 36-42.
- Yabuta, R.P., Joshi, R.P., Singh, R.D. and Adhikari, K.S. (1981). Effect of GA₃ on the performance of cauliflower plants variety Snowball-16. *Prog. Hort.*, 5(1): 35-38.
- Yang, X., Guan, P.C. and Chen. R.Y. (2006). Effect of nitrogen, phosphorus and potassium on growth and yield of broccoli (*Brassica oleracea* L. var. italica). *China Veg.*, 3(44-47): 39-45.
- Yoldas, F., Ceylan, S., Yagmur B., Mordogan, N. (2008). Effect of nitrogen fertilizer on yield quality and nutrient content in broccoli. *J. Plant Nutr.*, 31: 1333-1343.

APPENDICES

APPENDICES

Appendix I. Monthly record of air temperature, relative humidity, rainfall and sunshine hour of the experimental site during the period from November 2016 to March 2017

Month	Air tempe	rature (°c)	Relative	Total Rainfall	Sunshine
Monu	Maximum Minimum		humidity (%)	(mm)	(hr)
November, 2016	25.8	16.0	78	00	6.8
December, 2016	22.4	13.5	74	00	6.3
January, 2017	24.5	12.4	68	00	5.7
February, 2017	27.1	16.7	67	30	6.7
March, 2017	31.4	19.6	54	11	8.2

Source: Bangladesh Meteorological Department (Climate & weather division) Agargoan, Dhaka-1212

Appendix II. Soil characteristics of experimental field as analyzed by Soil Resources Development Institute (SRDI), Khamarbari, Farmgate, Dhaka

A. Morphological characteristics of the experimental field

- 0	-
Morphological features	Characteristics
Location	Horticulture farm field , SAU, Dhaka
AEZ	Madhupur Tract (28)
General Soil Type	Shallow red brown terrace soil
Land type	High land
Soil series	Tejgaon
Topography	Fairly leveled

B. Physical and chemical properties of the initial soil

Characteristics	Value			
% Sand	27			
% Silt	43			
% clay	30			
Textural class	Sandy loam			
pH	5.6			
Catayan exchange capacity	2.64 meq 100 g/soil			
Organic matter (%)	0.88			
Total N (%)	0.03			
Available P (ppm)	20.00			
Exchangeable K (me/100 g soil)	0.10			
Available S (ppm)	45			

Appendix III. Analysis of variance of the data on plant height of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA₃

	Degrees			Mean square					
Source of variation	of	Plant height (cm) at							
	freedom	20 DAT	30 DAT	40 DAT	50 DAT	Harvest			
Replication	2	0.313	1.633	1.905	3.600	7.548			
Levels of Potassium (A)	2	57.370**	111.893**	121.668**	241.013**	269.684**			
Levels of GA ₃ (B)	3	19.555**	43.333**	66.240**	108.309**	144.035**			
Interaction (A×B)	6	2.002*	8.614*	5.104*	26.108*	31.741*			
Error	22	0.780	3.147	2.014	6.307	8.301			

**: Significant at 0.01 level of significance;

*: Significant at 0.05 level of significance

Appendix IV. Analysis of variance of the data on number of leaves per plant of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA₃

	Degrees			Mean square					
Source of variation	of		Number of leaves per plant at						
	freedom	20 DAT	30 DAT	40 DAT	50 DAT	Harvest			
Replication	2	0.063	0.088	0.134	0.054	0.138			
Levels of Potassium (A)	2	18.720**	12.181**	69.301**	101.521**	95.434**			
Levels of GA ₃ (B)	3	2.269**	13.655**	13.130**	20.653**	23.225**			
Interaction (A×B)	6	2.860*	1.566**	2.797**	5.090*	4.442*			
Error	22	0.178	0.410	0.789	1.768	1.692			

**: Significant at 0.01 level of significance; *: Significant at 0.05 level of significance

Appendix V. Analysis of variance of the data on leaf length of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA₃

	Degrees			Mean square					
Source of variation	of		Leaf length (cm) at20 DAT30 DAT40 DAT50 DATHarves						
	freedom	20 DAT							
Replication	2	0.097	0.413	0.019	0.032	1.140			
Levels of Potassium (A)	2	13.470**	49.421**	64.527**	358.365**	347.176**			
Levels of GA ₃ (B)	3	8.429**	19.574**	32.529**	67.257**	81.331**			
Interaction (A×B)	6	7.772*	8.440*	10.041**	15.989**	14.275*			
Error	22	0.467	1.341	2.103	3.550	5.054			

**: Significant at 0.01 level of significance;

*: Significant at 0.05 level of significance

Appendix VI. Analysis of variance of the data on leaf breadth of broccoli at different days after transplanting (DAT) and harvest as influenced by different levels of potassium and GA₃

	Degrees			Mean square						
Source of variation	of		Leaf breadth (cm) at							
	freedom	20 DAT	30 DAT	40 DAT	50 DAT	Harvest				
Replication	2	0.005	0.243	0.053	0.097	0.060				
Levels of Potassium (A)	2	3.154**	17.317**	19.429**	39.993**	43.427**				
Levels of GA ₃ (B)	3	4.278**	9.116**	8.820**	14.469**	16.073**				
Interaction (A×B)	6	4.929*	8.213*	4.204*	2.185*	1.968*				
Error	22	0.206	0.278	0.667	0.718	0.835				

**: Significant at 0.01 level of significance; *: Significant at 0.05 level of significance

Appendix VII. Analysis of variance of the data on days to 1st curd initiation, stem length, stem diameter, and roots length and roots fresh weight per plant of broccoli as influenced by different levels of potassium and GA₃

	Degrees	Mean square								
Source of variation	of	Days to 1 st	Length of stem	Diameter of	Length of	Weight of	Diameter of			
	freedom	curd initiation	(cm)	stem (cm)	root (cm)	primary curd (g)	primary curd (cm)			
Replication	2	0.083	1.197	0.000	0.483	30.837	0.004			
Levels of Potassium (A)	2	24.250*	74.823**	0.274**	41.997**	17273.557**	3.311**			
Levels of GA ₃ (B)	3	30.991**	15.867**	0.459**	26.308**	11144.773**	5.980**			
Interaction (A×B)	6	24.435**	4.279*	5.217*	2.190*	1773.904*	6.063*			
Error	22	5.386	1.458	0.016	0.820	626.166	0.250			

**: Significant at 0.01 level of significance; *: Significant at 0.05 level of significance

Appendix VIII.	Analysis of variance of the data on primary curd diameter and primary curd weight and secondary curd
	number and weight of broccoli as influenced by different levels of potassium and GA ₃

	Degrees			Mean	square		
Source of variation	of	Dry matter	Dry matter	Number of	Weight of	Curd yield per	Curd yield per
Source of variation	freedom	content of	content of curd	secondary curd	secondary curd	plot (kg)	hectare (ton)
		plant (%)	(%)	per plant	(g)		
Replication	2	0.253	0.017	0.003	1.760	0.002	0.031
Levels of Potassium (A)	2	11.713**	6.656**	1.043**	712.765**	2.500**	43.409**
Levels of GA ₃ (B)	3	4.697**	1.989**	1.745**	682.480**	1.730**	30.037**
Interaction (A×B)	6	2.079*	1.227*	2.261*	57.590**	4.641*	4.198*
Error	22	0.337	0.075	0.069	15.323	0.072	1.256

**: Significant at 0.01 level of significance; *: Significant at 0.05 level of significance

Appendix IX. Per hectare production cost of broccoli

A. Input cost

	Labour	Ploughing	Seed	Water for		Manure an	nd fertili	zers		Insecticide/	Sub
Treatments	cost	cost	Cost	plant Establishment	Cowdung	Urea	MoP	TSP	GA ₃	pesticides	total (A)
K_0G_0	60,000	44,000	25,000	32,000	25,000	1,200	0	2,700	0	13,000	202,900
K_0G_1	60,000	44,000	25,000	32,000	25,000	1,200	0	2,700	1800	13,000	204,700
K_0G_2	60,000	44,000	25,000	32,000	25,000	1,200	0	2,700	2200	13,000	205,100
K ₀ G ₃	60,000	44,000	25,000	32,000	25,000	1,200	0	2,700	2600	13,000	205,500
K_1G_0	60,000	44,000	25,000	32,000	25,000	1,200	1,875	2,700	0.00	13,000	204,775
K_1G_1	60,000	44,000	25,000	32,000	25,000	1,200	1,875	2,700	1800	13,000	206,575
K_1G_2	60,000	44,000	25,000	32,000	25,000	1,200	1,875	2,700	2200	13,000	206,975
K_1G_3	60,000	44,000	25,000	32,000	25,000	1,200	1,875	2,700	2600	13,000	207,375
K_2G_0	60,000	44,000	25,000	32,000	25,000	1,200	2,500	2,700	0	13,000	205,400
K_2G_1	60,000	44,000	25,000	32,000	25,000	1,200	2,500	2,700	1800	13,000	207,200
K ₂ G ₂	60,000	44,000	25,000	32,000	25,000	1,200	2,500	2,700	2200	13,000	207,600
K ₂ G ₃	60,000	44,000	25,000	32,000	25,000	1,200	2,500	2,700	2600	13,000	208,000

K₀: 0 kg K₂O/ha (control)

G₀: 0 ppm GA₃ (control)

K₁: 75 kg K₂O/ha

 G_1 : 80 ppm GA_3

K₂: 100 kg K₂O/ha

G₂: 100 ppm GA₃

G₃: 120 ppm GA₃

Appendix IX. Per hectare production cost of broccoli (Cont'd)

B. Overhead cost (Tk./ha)

Treatments	Cost of lease of land (12% of value of land Tk. 15,00000/year	Miscellaneous cost (Tk. 5% of the input cost	Interest on running capital for 6 months (Tk. 12% of cost/year)	Sub total (Tk.) (B)	Total cost of production (Tk./ha) [Input cost (A)+ overhead cost (B)]
K_0G_0	90,000	10,145	18,183	118,328	321,228
K_0G_1	90,000	10,235	18,296	118,531	323,231
K_0G_2	90,000	10,255	18,321	118,576	323,676
K_0G_3	90,000	10,275	18,347	118,622	324,122
K_1G_0	90,000	10,239	18,301	118,540	323,315
K_1G_1	90,000	10,329	18,414	118,743	325,318
K_1G_2	90,000	10,349	18,439	118,788	325,763
K_1G_3	90,000	10,369	18,465	118,833	326,208
K_2G_0	90,000	10,270	18,340	118,610	324,010
K_2G_1	90,000	10,360	18,454	118,814	326,014
K_2G_2	90,000	10,380	18,479	118,859	326,459
K_2G_3	90,000	10,400	18,504	118,904	326,904

K₀: 0 kg K₂O/ha (control)

G₀: 0 ppm GA₃ (control)

K₁: 75 kg K₂O/ha

K₂: 100 kg K₂O/ha

G₁: 80 ppm GA₃

G₂: 100 ppm GA₃

G₃: 120 ppm GA₃